Begin2.DVI

(Ben Green) #1

Example 6-4. Given the vectors


A= 2 ˆe 1 + 3 ˆe 2 + 6 ˆe 3 and B =ˆe 1 + 2 ˆe 2 + 2 ˆe 3

Find:

(a) |A|, |B|, A·B, |A+B|

(b) The angle between the vectors A and B

(c) The direction cosines of A and B

(d) A unit vector in the direction C =A−B.

Solution

(a) |A|=


(2)^2 + (3)^2 + (6)^2 =


49 = 7
|B|=


(1)^2 + (2)^2 + (2)^2 =


9 = 3
A·B = (2)(1) + (3)(2) + (6)(2) = 20

A+B = 3 ˆe 1 + 5 ˆe 2 + 8 ˆe 3
|A+B|=


(3)^2 + (5)^2 + (8)^2 =


98

(b) A·B =|A||B|cos θ =⇒ cos θ=
A·B
|A||B|

=^20
7 · 3

=^20
21

θ= arccos (^2021 ) = 0. 3098446 radians = 17. 753 degrees

or one can determine that

tan θ=


(21)^2 −(20)^2
20

=


41
20

=⇒ θ= 0. 3098446 radians

(c)A unit vector in the direction of the vector A is obtained

by multiplying A by the scalar |A^1 |to obtain

ˆeA=
A
|A|

= cos α 1 ˆe 1 + cos β 1 eˆ 2 + cos γ 1 eˆ 3 =^2
7

ˆe 1 +^3
7

ˆe 2 +^6
7

ˆe 3

which implies the direction cosines are cos α 1 =^2

7

, cos β 1 =^3
7

, cos γ 1 =^6
7

In a similar

fashion one can show ˆeB=

B
|B|

= cos α 2 ˆe 1 + cosβ 2 eˆ 2 + cos γ 2 ˆe 3 =^1
3

ˆe 1 +^2
3

ˆe 2 +^2
3

ˆe 3 which

implies the direction cosines are cos α 2 =

1
3 , cos β^2 =

2
3 , cos γ^2 =

2
3

(d) C=A−B =ˆe 1 +ˆe 2 + 4 ˆe 3 and |C|=|A−B|=


(1)^2 + (1)^2 + (4)^2 =


18 = 3


2 Unit

vector in direction of C is ˆeC=

C
|C|

=eˆ^1 +eˆ^2 + 4 ˆe^3
3


2

.Make note of the fact that the

sum of the squares of the direction cosines equals unity.
Free download pdf