Elliptic cylindrical coordinates (ξ, η, z ) :
x= cosh ξcos η, ξ ≥ 0
y= sinh ξsin η, 0 ≤η≤ 2 π
z=z, −∞ < z < ∞
ds^2 =h^2 ξdξ^2 +h^2 ηdη^2 +h^2 zdz^2hξ=hη=√
sinh^2 ξ+ sin^2 η, h z= 1gij =
h^2 ξ 0 0
0 h^2 η 0
0 0 h^2 z
(8 .81)Elliptic coordinates (ξ, η, φ ) :
x=√
(1 −η^2 )(ξ^2 −1) cos φ, − 1 ≤η≤ 1
y=√
(1 −η^2 )(ξ^2 −1) sin φ, 1 ≤ξ < ∞
z=ξη, 0 ≤φ≤ 2 π
ds^2 =h^2 ξdξ^2 +h^2 ηdη^2 +h^2 φdφ^2hξ=√
ξ^2 −η^2
ξ^2 − 1, h η=√
ξ^2 −η^2
1 −η^2, h φ=√
(ξ^2 −1)(1 −η^2 )gij =
h^2 ξ 0 0
0 h^2 η 0
0 0 h^2 φ
(8 .82)Transformation of Vectors
A vector field defined by
A=A(x, y, z ) = A 1 (x, y, z )ˆe 1 +A 2 (x, y, z )ˆe 2 +A 3 (x, y, z )ˆe 3represents a magnitude and direction associated to each point (x, y, z )in some region
Ror three dimensional cartesian coordinates. This vector field is to remain invariant
under a coordinate transformation. However, the form used to represent the vector
field will change. For example, under a transformation to cylindrical coordinates,
where
x=rcos θ y =rsin θ z =z, (8 .83)the above vector can be represented in terms of the unit orthogonal vectors ˆer, ˆeθ,ˆez
in the form
A=A(r, θ, z) = Ar(r, θ, z )ˆer+Aθ(r, θ, z )ˆeθ+Az(r, θ, z )ˆez. (8 .84)