Since
∂φ
∂x
eˆ 1 +∂φ
∂y
ˆe 2 +∂φ
∂z
eˆ 3 =
(
∂φ
∂u
∂u
∂x
+∂φ
∂v
∂v
∂x
+∂φ
∂w
∂w
∂x
)
ˆe 1
+
(
∂φ
∂u
∂u
∂y +
∂φ
∂v
∂v
∂y +
∂φ
∂w
∂w
∂y
)
ˆe 2
+
(
∂φ
∂u
∂u
∂z
+∂φ
∂v
∂v
∂z
+∂φ
∂w
∂w
∂z
)
ˆe 3 ,
equation (8.89) can be expressed in the form
∇φ= grad φ=∇u∂φ
∂u
+∇v∂φ
∂v
+∇w∂φ
∂w
. (8 .92)
Equation (8.92) suggests how the operator ∇can be expressed in a general curvilinear
coordinate system. In a general curvilinear coordinate system (u, v, w )one finds the
operator ∇has the form
∇=∇u∂u∂ +∇v∂v∂ +∇w∂w∂. (8 .91)
Divergence in a General Orthogonal System of Coordinates
To find the divergence in an orthogonal curvilinear system, the following rela-
tions are employed:
∇u=
1
h 1
ˆeu, ∇v=^1
h 2
eˆv, ∇w=^1
h 3
ˆew (8 .92)
which are special cases of the result in equation (8.89). Equations (8.92) imply
ˆeu=ˆev׈ew=h 2 h 3 (∇v)×(∇w)
ˆev=ˆew׈eu=h 1 h 3 (∇w)×(∇u)
ˆew=ˆeu×eˆv=h 1 h 2 (∇u)×(∇v)
(8 .93)
Example 8-19. Derive the divergence of a vector which is represented in the
generalized orthogonal coordinates (u, v, w )in the form
F=F(u, v, w ) = Fuˆeu+Fvˆev+Fwˆew.
Solution: By using the properties of the del operator one finds
∇·F =∇(Fuˆeu) + ∇(Fvˆev) + ∇(Fwˆew). (8 .94)