Begin2.DVI

(Ben Green) #1
Since

∂φ
∂x

eˆ 1 +∂φ
∂y

ˆe 2 +∂φ
∂z

eˆ 3 =

(
∂φ
∂u

∂u
∂x

+∂φ
∂v

∂v
∂x

+∂φ
∂w

∂w
∂x

)
ˆe 1

+

(
∂φ
∂u

∂u
∂y +

∂φ
∂v

∂v
∂y +

∂φ
∂w

∂w
∂y

)
ˆe 2

+

(
∂φ
∂u

∂u
∂z

+∂φ
∂v

∂v
∂z

+∂φ
∂w

∂w
∂z

)
ˆe 3 ,

equation (8.89) can be expressed in the form

∇φ= grad φ=∇u∂φ
∂u

+∇v∂φ
∂v

+∇w∂φ
∂w

. (8 .92)


Equation (8.92) suggests how the operator ∇can be expressed in a general curvilinear

coordinate system. In a general curvilinear coordinate system (u, v, w )one finds the

operator ∇has the form

∇=∇u∂u∂ +∇v∂v∂ +∇w∂w∂. (8 .91)

Divergence in a General Orthogonal System of Coordinates


To find the divergence in an orthogonal curvilinear system, the following rela-

tions are employed:

∇u=

1
h 1

ˆeu, ∇v=^1
h 2
eˆv, ∇w=^1
h 3

ˆew (8 .92)

which are special cases of the result in equation (8.89). Equations (8.92) imply

ˆeu=ˆev׈ew=h 2 h 3 (∇v)×(∇w)
ˆev=ˆew׈eu=h 1 h 3 (∇w)×(∇u)
ˆew=ˆeu×eˆv=h 1 h 2 (∇u)×(∇v)

(8 .93)

Example 8-19. Derive the divergence of a vector which is represented in the


generalized orthogonal coordinates (u, v, w )in the form

F=F(u, v, w ) = Fuˆeu+Fvˆev+Fwˆew.

Solution: By using the properties of the del operator one finds

∇·F =∇(Fuˆeu) + ∇(Fvˆev) + ∇(Fwˆew). (8 .94)
Free download pdf