Since curl grad u= 0,the above simplifies to
∇× (Fuˆeu) = ∇(Fuh 1 )׈eu
h 1
=[
1
h 1∂(Fuh 1 )
∂uˆeu+^1
h 2∂(Fuh 1 )
∂vˆev+^1
h 3∂(Fuh 1 )
∂weˆw]
× ˆeu
h 1=1
h 1 h 3∂(Fuh 1 )
∂wˆev−^1
h 1 h 2∂(Fuh 1 )
∂vˆewIn a similar manner it may be verified that the remaining terms in equation (8.96)
can be expressed as
∇× (Fvˆev) =^1
h 1 h 2∂(Fvh 2 )
∂uˆew−^1
h 2 h 3∂(Fvh 2 )
∂wˆeuand ∇× (Fwˆew) =^1
h 2 h 3∂(Fwh 3 )
∂vˆeu−^1
h 1 h 3∂(Fwh 3 )
∂uˆev.Hence, the curlof a vector in generalized curvilinear coordinates can be represented
in the form
∇× F=^1
h 2 h 3[
∂(Fwh 3 )
∂v−∂(Fvh^2 )
∂w]
ˆeu+^1
h 1 h 3[
∂(Fuh 1 )
∂w−∂(Fwh^3 )
∂u]
ˆev+1
h 1 h 2[
∂(Fvh 2 )
∂u −∂(Fuh 1 )
∂v]
ˆew.(8 .97)Equation (8.97) can also be represented in the determinant form as
∇× F=h^1
1 h 2 h 3∣∣
∣∣
∣∣h 1 ˆeu h 2 ˆev h 3 ˆew
∂
∂u∂
∂v∂
∂w
Fuh 1 Fvh 2 Fwh 3∣∣
∣∣
∣∣. (8 .98)The Laplacian in Generalized Orthogonal Coordinates
Using the definition ∇^2 φ=∇∇ φand the relation for the gradient given by equa-
tion (8.89) and show that
∇∇ φ=∇[
1
h 1∂φ
∂u eˆu+1
h 2∂φ
∂v ˆev+1
h 3∂φ
∂w ˆew]. (8 .99)
The result of equation (8.95) simplifies equation (8.99) to the final form given as
∇^2 φ=1
h 1 h 2 h 3[
∂
∂u(
h 2 h 3
h 1∂φ
∂u)
=∂
∂v(
h 1 h 3
h 2∂φ
∂v)
+∂
∂w(
h 1 h 2
h 3∂φ
∂w)]. (8 .100)