Begin2.DVI

(Ben Green) #1

Properties of the Cross Product


A×B =−B×A (noncommutative)

A×(B+C) = A×B+A×C (distributive law)

m(A×B) = (mA)×B =A×(mB) ma scalar

A×A= 0 since A is parallel to itself.

Let A =A 1 ˆe 1 +A 2 eˆ 2 +A 3 ˆe 3 and B =B 1 ˆe 1 +B 2 ˆe 2 +B 3 ˆe 3 be two nonzero vectors

in component form and form the cross product A×B to obtain

A×B = (A 1 ˆe 1 +A 2 ˆe 2 +A 3 ˆe 3 )×(B 1 ˆe 1 +B 2 ˆe 2 +B 3 ˆe 3 ). (6 .23)

The cross product can be expanded by using the distributive law to obtain

A×B=A 1 B 1 eˆ 1 ×eˆ 1 +A 1 B 2 ˆe 1 ׈e 2 +A 1 B 3 ˆe 1 ׈e 3
+A 2 B 1 eˆ 2 ׈e 1 +A 2 B 2 ˆe 2 ׈e 2 +A 2 B 3 ˆe 2 ׈e 3
+A 3 B 1 eˆ 3 ׈e 1 +A 3 B 2 ˆe 3 ׈e 2 +A 3 B 3 ˆe 3 ׈e 3.

(6 .24)

Simplification by using the previous results from equation (6.22) produces the im-

portant cross product formula

A×B = (A 2 B 3 −A 3 B 2 )ˆe 1 + (A 3 B 1 −A 1 B 3 )ˆe 2 + (A 1 B 2 −A 2 B 1 )ˆe 3 , (6 .25)

This result that can be expressed in the determinant form^3

A×B =

∣∣
∣∣
∣∣

eˆ 1 ˆe 2 ˆe 3
A 1 A 2 A 3
B 1 B 2 B 3

∣∣
∣∣
∣∣=

∣∣
∣∣A^2 A^3
B 2 B 3

∣∣
∣∣ˆe 1 −

∣∣
∣∣A^1 A^3
B 1 B 3

∣∣
∣∣ˆe 2 +

∣∣
∣∣A^1 A^2
B 1 B 2

∣∣
∣∣ˆe 3. (6 .26)

In summary, the cross product of two vectors A and B is a new vector C , where

C=A×B =C 1 ˆe 1 +C 2 eˆ 2 +C 3 ˆe 3 =

∣∣
∣∣
∣∣

ˆe 1 ˆe 2 ˆe 3
A 1 A 2 A 3
B 1 B 2 B 3

∣∣
∣∣
∣∣

with components

C 1 =A 2 B 3 −A 3 B 2 , C 2 =A 3 B 1 −A 1 B 3 , C 3 =A 1 B 2 −A 2 B 1 (6 .27)

(^3) For more information on determinants see chapter 10.

Free download pdf