8-42. In cylindrical coordinates (r, θ, z ),show that
curl F=∇× F =^1
r∣∣
∣∣
∣∣ˆer rˆeθ eˆz
∂
∂r∂
∂θ∂
∂z
Fr rF θ Fz∣∣
∣∣
∣∣8-43. In cylindrical coordinates (r, θ, z ),show that
div F=∇·F =
1
r[
∂
∂r (rF r) +∂
∂θ (Fθ) +∂
∂z (rA z)]8-44. In cylindrical coordinates (r, θ, z ),show that
grad u=∇u=∂u
∂rˆer+^1
r∂u
∂θˆeθ+∂u
∂zeˆz8-45. In cylindrical coordinates (r, θ, z ),show that
∇^2 u=^1
r∂
∂r(
r∂u
∂r)
+^1
r^2∂^2 u
∂θ^2+∂(^2) u
∂z^2
8-46. In spherical coordinates (r, θ, φ ),show that
curl F =∇× F =^1
r^2 sin θ∣∣
∣∣
∣∣ˆer rˆeθ rsin θˆeφ
∂
∂r∂
∂θ∂
∂φ
Fr rF θ rsin θF φ∣∣
∣∣
∣∣8-47. In spherical coordinates (r, θ, φ ),show that
div F =∇·F =
1
r^2 sin θ[
∂
∂r(
r^2 sin θF r)
+∂
∂θ (rsin θF θ) +∂
∂φ (rF φ)]8-48. In spherical coordinates (r, θ, φ ),show that
grad u=∂u
∂rˆer+^1
r∂u
∂θˆeθ+^1
rsin^2 θ∂u
∂φˆeφ8-49. In spherical coordinates (r, θ, φ ),show that
∇^2 u=1
r^2∂
∂r(
r^2∂u
∂r)
+1
r^2 sin θ∂
∂θ(
sin θ∂u
∂φ)
+1
r^2 sin^2 θ∂^2 u
∂φ^2