Begin2.DVI

(Ben Green) #1
8-42. In cylindrical coordinates (r, θ, z ),show that

curl F=∇× F =^1
r

∣∣
∣∣
∣∣

ˆer rˆeθ eˆz

∂r


∂θ


∂z
Fr rF θ Fz

∣∣
∣∣
∣∣

8-43. In cylindrical coordinates (r, θ, z ),show that

div F=∇·F =

1
r

[

∂r (rF r) +


∂θ (Fθ) +


∂z (rA z)

]

8-44. In cylindrical coordinates (r, θ, z ),show that

grad u=∇u=∂u
∂r

ˆer+^1
r

∂u
∂θ

ˆeθ+∂u
∂z

eˆz

8-45. In cylindrical coordinates (r, θ, z ),show that

∇^2 u=^1
r


∂r

(
r∂u
∂r

)
+^1
r^2

∂^2 u
∂θ^2

+∂

(^2) u
∂z^2


8-46. In spherical coordinates (r, θ, φ ),show that

curl F =∇× F =^1
r^2 sin θ

∣∣
∣∣
∣∣

ˆer rˆeθ rsin θˆeφ

∂r


∂θ


∂φ
Fr rF θ rsin θF φ

∣∣
∣∣
∣∣

8-47. In spherical coordinates (r, θ, φ ),show that

div F =∇·F =

1
r^2 sin θ

[

∂r

(
r^2 sin θF r

)
+


∂θ (rsin θF θ) +


∂φ (rF φ)

]

8-48. In spherical coordinates (r, θ, φ ),show that

grad u=∂u
∂r

ˆer+^1
r

∂u
∂θ

ˆeθ+^1
rsin^2 θ

∂u
∂φ

ˆeφ

8-49. In spherical coordinates (r, θ, φ ),show that

∇^2 u=

1
r^2


∂r

(
r^2

∂u
∂r

)
+

1
r^2 sin θ


∂θ

(
sin θ

∂u
∂φ

)
+

1
r^2 sin^2 θ

∂^2 u
∂φ^2

8-50. Show that

(a) In cylindrical coordinates (r, θ, z ),the element of volume is dV =r dr dθdz.

(b) In spherical coordinates (r, θ, φ ),the element of volume is dV =r^2 sin θ dr dφ dθ.

(c) In a general orthogonal curvilinear coordinate system (u, v, w ),the element of

volume can be expressed as dV =huhvhwdu dv dw.
Free download pdf