Begin2.DVI

(Ben Green) #1
Using similar arguments associated with the representation of cos αand cos β, one

can show

cos b= cos ccos a+ sin csin acos β
cos a= cos bcos c+ sin bsin ccos α

(9 .15)

The equations (9.14) and (9.15)) are known as the law of cosines for the spherical

triangle ABC.

Replace the dot product in equation (9.11) by a cross product and show

sin γ=|(ˆeB׈eC)×(ˆeA׈eC)|
|ˆeB׈eC||ˆeA׈eC|

(9 .16)

The cross product relation (6.30), repeated here as

(A×B)×(C×D) = C

[
D·(A×B)

]
−D

[
C·(A×B)

]
(9 .17)

can be used to simplify the numerator of equation (9.16). One can use properties of

the scalar triple product to write

(ˆeB׈eC)×(ˆeA׈eC) = ˆeA[ˆeC·(ˆeB׈eC)] −ˆeC[ˆeA·(ˆeB׈eC)]
=ˆeA[ˆeB·(ˆeC׈eC)] −ˆeC[ˆeA·(ˆeB׈eC)]
=−eˆC[ˆeA·(ˆeB׈eC)]

(9 .18)

so that

|(ˆeB×eˆC)×(ˆeA×eˆC)|=eˆA·(ˆeB׈eC)

The triple scalar product relation shows that

sin γsin asin b=|ˆeA·(ˆeB׈eC)|
sin αsin bsin c=|ˆeB·(ˆeC׈eA)|
sin βsin csin a=|ˆeC·(ˆeA׈eB)|

(9 .19)

and the scalar triple product relation implies that

sin αsin bsin c= sin βsin csin a= sin γsin asin b (9 .20)

Divide each term in equation (9.20) by sin asin bsin cto show

sin α
sin a=

sin β
sin b=

sin γ
sin c (9 .21)

which is known as the law of sines from spherical trigonometry.
Free download pdf