Begin2.DVI

(Ben Green) #1
10-24. Let

A=

[
4 3
−1 0

]
B=

[
−1 1
2 − 3

]

(a) Calculate C=AB (b) Find |A|, |B|, |C| (c) Verify that |C|=|A||B|

10-25. Show that the equation of a straight line passing through the two points

(x 1 , y 1 )and (x 2 , y 2 )can be represented by the determinant

∣∣
∣∣
∣∣

x y 1
x 1 y 1 1
x 2 y 2 1

∣∣
∣∣
∣∣= 0.

10-26. Find A−^1 and verify that AA −^1 =I.

(a) A=

[
4 1
11 3

]
(b) A=

[
2 − 1
−4 3

]
(c) A=



1 2 − 3
1 3 − 3
2 3 − 5



10-27. Verify that the given matrices are orthogonal

(a) A=
√^1
a^2 +b^2

[
a b
−b a

]
(b) U=



cos θ 0 sin θ
0 1 0
−sin θ 0 cosθ



(c) V =



cos θ sin θcos φ sin θsin φ
−sin θ cos θcos φ cos θsin φ
0 −sin φ cos φ



10-28. Find the inverse of the following matrices:

(a)A lower triangular matrix

A=



1 0 0
3 1 0
4 5 1



(b)An upper triangular matrix

B=




1 −2 1 1
0 1 3 0
0 0 1 − 1
0 0 0 1




(c)A symmetric matrix

C=




0 .2 0 .1 0 .0 0. 0
0 .1 0 .2 0 .1 0. 0
0 .0 0 .1 0 .2 0. 1
0 .0 0 .0 0 .1 0. 2




(d)A diagonal matrix

D=




λ 1 0 0 0
0 λ 2 0 0
0 0 λ 3 0
0 0 0 λ 4


 λ

i= 0 for all i

10-29. Find values of α 1 , α 2 and α 3 such that the given matrix is orthogonal

A=



1
2 α^20
α 1 12 0
0 0 α 3


Free download pdf