Begin2.DVI

(Ben Green) #1
10-30. Let

A=

[
a 11 a 12
a 21 a 22

]
,

where aij =aij(t), i, j = 1, 2 , 3 are differentiable functions of t.

(a) Show

d
dt

(det A) =

∣∣
∣∣

da 11
dt

da 12
dt
a 21 a 22

∣∣
∣∣+

∣∣
∣∣daa^1121 a^12
dt

da 22
dt

∣∣
∣∣

(b) Evaluate dtd(det A)when

A=

[
2 t
t^2 t^3

]

10-31. Let

A=



a 11 a 12 a 13
a 21 a 22 a 23
a 31 a 32 a 33


,

where aij =aij(t), i, j = 1, 2 , 3 are differentiable functions of t.

(a) Show

d
dt(det A) =

∣∣
∣∣
∣∣

da 11
dt

da 12
dt

da 13
dt
a 21 a 22 a 23
a 31 a 32 a 33

∣∣
∣∣
∣∣+

∣∣
∣∣
∣∣

a 11 a 12 a 13
da 21
dt

da 22
dt

da 23
dt
a 31 a 32 a 33

∣∣
∣∣
∣∣+

∣∣
∣∣
∣∣

a 11 a 12 a 13
a 21 a 22 a 23
da 31
dt

da 32
dt

da 33
dt

∣∣
∣∣
∣∣

(b) Evaluate dtd(det A)when

A=



1 t t + 1
0 t^22 t
t− 1 t 0



10-32. Is the statement

det (A+B) = det (A) + det (B)

true for arbitrary n×nsquare matrices A and B?Test your answer by using the

matrices

A=

[
1 2
3 7

]
B=

[
1 3
2 7

]
.

10-33. Verify the transmission matrices for the four-terminal networks illustrated.
Free download pdf