It is now possible to differentiate the first derivatives given by equations (12.62) and
(12.64) to obtain the second derivatives
∂^2 r
∂x^2 =−sin θ
∂θ
∂x
∂^2 r
∂x^2 =
sin^2 θ
r
,
∂^2 r
∂y^2 = cosθ
∂θ
∂y
∂^2 r
∂y^2
=cos
(^2) θ
r
(12 .65)
and
∂^2 θ
∂x^2
=−cos θ
r
∂θ
∂x
+sin θ
r
∂r
∂x
∂^2 θ
∂x^2 =
2 sin θcos θ
r^2
,
∂^2 θ
∂y^2
=−sin θ
r
∂θ
∂y
−cos θ
r^2
∂r
∂y
∂^2 θ
∂y^2 =−
2 sin θcos θ
r^2
(12 .66)
Substitute the first and second derivatives from equations (12.62), (12.64), (12.66)
into the equations (12.57) and (12.58) to show that after simplification the equation
(12.56) becomes
∇^2 U=∂
(^2) U
∂x^2
+∂
(^2) U
∂y^2
=∂
(^2) U
∂r^2
=^1
r
∂U
∂r
+^1
r^2
∂^2 U
∂θ^2
= 0 (12 .67)
Solution 2
Write the transformation equations (12.59) as
F(x, y, r, θ ) = x−rcos θ= 0 and G(x, y, r, θ) = y−rsin θ= 0 (12 .68)
and use the notation for Jacobian determinants to write
∂r
∂x =−
∂(F,G )
∂(x,θ)
∂(F,G )
∂(r,θ)
=−
∣∣
∣∣^1 rsin θ
0 −rcos θ
∣∣
∣∣
∣∣
∣∣−cos θ r sin θ
−sin θ −rcos θ
∣∣
∣∣
=rcosr θ= cos θ
∂θ
∂x =−
∂(F,G )
∂(r,x )
∂(F,G )
∂(r,θ)
=−
∣∣
∣∣−sinθ −rcos θ
−sin θ 0
∣∣
∣∣
r =−
sin θ
r
∂r
∂y
=−
∂(F,G )
∂(y,θ)
∂(F,G )
∂(r,θ)
=−
∣∣
∣∣^0 rsin θ
1 −rcos θ
∣∣
∣∣
r
= sin θ
∂θ
∂y
=−
∂(F,G )
∂(r,y )
∂(F,G )
∂(r,θ)
=−
∣∣
∣∣−cos θ^0
−sin θ 1
∣∣
∣∣
r
=cos θ
r