Begin2.DVI

(Ben Green) #1
DIfferentiate the equations (12.69) with respect to yto obtain

Fy+Fuuy+Fvvy+Fwwy=0

Gy+Guuy+Gvvy+Gwwy=0
Hy+Huuy+Hvvy+Hwwy=0

(12 .74)

This produces three equations in the three unknowns uy, v y, w ywhich can be solved

using Cramers rule. If the Jacobian determinant of F, G, H is different from zero,

then the unique solution is given by

uy=−

∂(F,G,H )
∂(y,v,w )
∂(F,G,H )
∂(u,v,w )

, vy=−

∂(F,G,H )
∂(u,y,w )
∂(F,G,H )
∂(u,v,w )

, w y=−

∂(F,G,H )
∂(u,v,y)
∂(F,G,H )
∂(u,v,w )

(12 .75)

Generalization


The system of equations

F 1 (x 1 , x 2 ,... , x n, y 1 , y 2 ,... , ym) =0
F 2 (x 1 , x 2 ,... , x n, y 1 , y 2 ,... , ym) =0

..

.

..

.

Fm(x 1 , x 2 ,... , x n, y 1 , y 2 ,... , ym) =0

(12 .76)

in m+nunknowns implicitly defines the functions

y 1 =y 1 (x 1 , x 2 ,... , x n)
y 2 =y 2 (x 1 , x 2 ,... , x n)

..

.

..

.

ym=ym(x 1 , x 2 ,... , x n)

(12 .77)

If the Jacobian determinant

∂(F 1 , F 2 ,... , F m)
∂(y 1 , y 2 ,... , y m)

=

∣∣
∣∣
∣∣
∣∣
∣∣

∂F 1
∂y 1

∂F 1
∂y 2 ···

∂F 1
∂ym
∂F 2
∂y 1

∂F 2
∂y 2 ···

∂F 2
∂ym

..

.

..

. ...

..

.

∂F m
∂y 1

∂Fm
∂y 2 ···

∂Fm
∂ym

∣∣
∣∣
∣∣
∣∣
∣∣

is different from zero at a point (x^01 , x^02 ,... , x^0 n, y^01 , y 20 ,... , y^0 m), then one can calculate

the partial derivatives

∂y i

∂x j at this point for any combination of integer values for i, j

satisfying 1 ≤i≤mand 1 ≤j≤n. The above is true because if one calculates the
Free download pdf