Now interchange the roles of summation and integration on the right hand side of
equation (12.119) to obtain
ζ(z) =∑∞r=11
rz=^1
Γ(z)∫∞0xz−^1∑∞r=1e−rx dx (12.120)where now the summation on the right hand side of equation (12.120) is the geo-
metric series ∞
∑r=1e−rx =e−x+e−^2 x+e−^3 x+··· = e−x
1 −e−xConsequently, the equation (12.120) simplifies to the form
ζ(z)Γ(z) =∫∞0xz−^1e−x
1 −e−xdx (12.121)Observe that the Gamma function and Zeta function properties dictate that z be
restricted such that z= 1, 0 ,− 1 ,− 2 ,− 3 ,... in using equation (12.121).
Product property of the Gamma function
The Gamma function satisfies the product property that
Γ(
1
n)
Γ(
2
n)
Γ(
3
n)
Γ(
4
n)
···Γ(
n− 1
n)
=(2π)n−^21
n^12(12.122)In order to derive this result we develop the following background material.
Example 12-7.
Show that
sin nθ = 2n−^1 sin θsin(θ+π
n) sin(θ+^2 π
n) sin(θ+^3 π
n)···sin( θ+ (n−1)π
n) (12.123)and
θlim→ 0sin nθ
sin θ=n= 2n−^1 sin(π
n) sin(2 π
n) sin(3 π
n)···sin((n−1)π
n) (12.124)Solution
The following proof follows that presented in the reference Hobson^3
First show that the function
x^2 n− 2 xncos nθ + 1 (12.125)(^3) Ernest William Hobson, A treatise on plane trigonometry , 5th Edition, Cambridge University
Press, 1921, Pages 117-119.