Begin2.DVI

(Ben Green) #1

Derivatives of ln Γ( z)


Using the Weierstrass definition of the Gamma function

1
Γ(z)=ze

γz
∏∞

n=1

[(
1 +

1
z

)
e−z/n

]
(12.135)

take the natural logarithm of both sides and show

ln Γ(z) = −ln z−γz −

∑∞

k=1

[
ln

(
1 +

z
k

)

z
k

]
(12.136)

Take the derivative of each term in this equation to show

d
dz

ln Γ(z) = Γ

′(z)
Γ(z)

=−^1
z

−γ−

∑∞

k=1

(
1
z+k

−^1
k

)
(12.137)

Differentiate equation (12.137) to obtain

d^2
dz^2 ln Γ(z) =

1
z^2 +

∑∞

k=1

1
(z+k)^2 =

1
z^2 +

1
(z+ 1)^2 +

1
(z+ 2)^2 +··· (12.138)

Continuing differentiating the function lnΓ(z)and use the fact that

d
dz

(z+k)−^2 =(−2)(z+k)−^3
d^2
dz^2

(z+k)−^2 =(−2)(−3)(z+k)−^4
d^3
dz^3 (z+k)

− (^2) =(−2)(−3)(−4)(z+k)− 5


..

.

..

.

and demonstrate that

dn
dznln Γ(z) =(−1)

n(n−1)!
∑∞

k=0

1
(z+k)n
dn+1
dn+1

ln Γ(z) =(−1)n+1n!

∑∞

k=0

1
(z+k)n+1

(12.139)

Make note of the following definitions. The function ζ(n, z) =

∑∞

k=0

1
(z+k)n

,where

any term where (z+k) = 0 is understood to be excluded from the summation process,
Free download pdf