Derivatives of ln Γ( z)
Using the Weierstrass definition of the Gamma function
1
Γ(z)=ze
γz
∏∞
n=1
[(
1 +
1
z
)
e−z/n
]
(12.135)
take the natural logarithm of both sides and show
ln Γ(z) = −ln z−γz −
∑∞
k=1
[
ln
(
1 +
z
k
)
−
z
k
]
(12.136)
Take the derivative of each term in this equation to show
d
dz
ln Γ(z) = Γ
′(z)
Γ(z)
=−^1
z
−γ−
∑∞
k=1
(
1
z+k
−^1
k
)
(12.137)
Differentiate equation (12.137) to obtain
d^2
dz^2 ln Γ(z) =
1
z^2 +
∑∞
k=1
1
(z+k)^2 =
1
z^2 +
1
(z+ 1)^2 +
1
(z+ 2)^2 +··· (12.138)
Continuing differentiating the function lnΓ(z)and use the fact that
d
dz
(z+k)−^2 =(−2)(z+k)−^3
d^2
dz^2
(z+k)−^2 =(−2)(−3)(z+k)−^4
d^3
dz^3 (z+k)
− (^2) =(−2)(−3)(−4)(z+k)− 5
..
.
..
.
and demonstrate that
dn
dznln Γ(z) =(−1)
n(n−1)!
∑∞
k=0
1
(z+k)n
dn+1
dn+1
ln Γ(z) =(−1)n+1n!
∑∞
k=0
1
(z+k)n+1
(12.139)
Make note of the following definitions. The function ζ(n, z) =
∑∞
k=0
1
(z+k)n