Derivatives of ln Γ( z)
Using the Weierstrass definition of the Gamma function
1
Γ(z)=zeγz
∏∞n=1[(
1 +1
z)
e−z/n]
(12.135)take the natural logarithm of both sides and show
ln Γ(z) = −ln z−γz −∑∞k=1[
ln(
1 +z
k)
−z
k]
(12.136)Take the derivative of each term in this equation to show
d
dzln Γ(z) = Γ′(z)
Γ(z)=−^1
z−γ−∑∞k=1(
1
z+k−^1
k)
(12.137)Differentiate equation (12.137) to obtain
d^2
dz^2 ln Γ(z) =1
z^2 +∑∞k=11
(z+k)^2 =1
z^2 +1
(z+ 1)^2 +1
(z+ 2)^2 +··· (12.138)Continuing differentiating the function lnΓ(z)and use the fact that
d
dz(z+k)−^2 =(−2)(z+k)−^3
d^2
dz^2(z+k)−^2 =(−2)(−3)(z+k)−^4
d^3
dz^3 (z+k)− (^2) =(−2)(−3)(−4)(z+k)− 5
..
.
..
.
and demonstrate that
dn
dznln Γ(z) =(−1)n(n−1)!
∑∞k=01
(z+k)n
dn+1
dn+1ln Γ(z) =(−1)n+1n!∑∞k=01
(z+k)n+1(12.139)Make note of the following definitions. The function ζ(n, z) =
∑∞k=01
(z+k)n