Begin2.DVI

(Ben Green) #1

Taylor series expansion for ln Γ( x+ 1)


Make reference to the equations (12.136), (12.137), (12.138), (12.139), and verify

that when zis replaced by (x+1) in these equations, one obtains the following values.

ln Γ(x+ 1)
x=0

= lnΓ(1) = 0
d
dx

ln Γ(x+ 1)
x=0

=−γ because (12.137) is a telescoping series

d^2
dx^2

ln Γ(x+ 1)
x=0

=^1
12

+^1
22

+^1
32

+··· =ζ(2)

..

.

..

.

dn
dx n

ln Γ(x+ 1)
x=0

=(−1)n(n−1)!ζ(n) n≥ 2

(12.141)

where

ζ(n) =

∑∞

k=1

1
kn

is the Riemann Zeta function. The above values of the derivatives of ln Γ(x+ 1),

evaluated at x= 0, produces the Taylor series expansion for ln Γ(x+ 1) as

ln Γ(x+ 1) = −γx +ζ(2)

x^2
2 −ζ(3)

x^3
3 +ζ(4)

x^4
4 +···+ (−1)

nζ(n)xn
n +··· (12.142)

which converges if xis less than unity.

Another product formula


Define the function

φ(z) =

nzΓ(z)Γ

(
z+^1 n

)
Γ

(
z+n^2

)
···Γ

(
z+(n−n1)

)

nΓ(nz ) (12.143)

and use the equation (12.106) to write

Γ

(
z+

r
n

)
= limm→∞
( (m−1)!mz+r/n
z+rn

)(
z+rn+ 1

)(
z+nr+ 2

)
···

(
z+rn+m− 1

) (12.144)

for r= 0, 1 , 2 ,.. ., n − 1 and

Γ(nz ) = limm→∞

(nm −1)!(nm )nz
(nz )(nz + 1)(nz + 2) ···(nz +nm −1) (12.145)

to express equation (12.143) in the form

φ(z) =

nnz

n∏− 1

r=0
mlim→∞ (m−1)!m

z+r/n
(
z+rn

)(
z+nr+ 1

)(
z+nr+ 2

)
···

(
z+rn+m− 1

)

nmlim→∞ (nm −1)!(nm )

nz
nz (nz + 1)(nz + 2) ···(nz +nm −1)

(12.146)
Free download pdf