Begin2.DVI

(Ben Green) #1
Figure 12-8. The Laplace transform operator.

In the defining equation (12.175) the parameter sis selected such that the in-

tegral exists and many times it is expressed as a complex variable s=σ+i ω where

σ and ωare real and iis an imaginary component satisfying i^2 =− 1. The Laplace

transform can be studied with or without employing knowledge of complex variables.

Example 12-11. (Laplace transform)


Find the Laplace transform of sin(α t)where αis a nonzero constant.

Solution


By definition L{ sin(α t); t→s}=

∫∞

0

sin(α t)e−st dt

Integrate by parts with u= sin(α t)and dv =e−st dt to obtain

I=

∫∞

0

sin(α t)e−st dt =−sin(α t)

e−st
s


0

+

α
s

∫∞

0

cos(α t)e−stdt

Integrate by parts again with u= cos(α t)and dv =e−st dt and show

I=

∫∞

0

sin(α t)e−st dt =

α
s

[
cos(α t)

e−st
−s


0


α
sI

]

This last equation simplifies to

(1 +

α^2
s^2 )I=

α

s^2 or I=

∫∞

0

sin(α t)e−st dt =L{ sin(α t); t→s}=

α
s^2 +α^2
Free download pdf