Figure 12-8. The Laplace transform operator.
In the defining equation (12.175) the parameter sis selected such that the in-
tegral exists and many times it is expressed as a complex variable s=σ+i ω where
σ and ωare real and iis an imaginary component satisfying i^2 =− 1. The Laplace
transform can be studied with or without employing knowledge of complex variables.
Example 12-11. (Laplace transform)
Find the Laplace transform of sin(α t)where αis a nonzero constant.
Solution
By definition L{ sin(α t); t→s}=
∫∞
0
sin(α t)e−st dt
Integrate by parts with u= sin(α t)and dv =e−st dt to obtain
I=
∫∞
0
sin(α t)e−st dt =−sin(α t)
e−st
s
∞
0
+
α
s
∫∞
0
cos(α t)e−stdt
Integrate by parts again with u= cos(α t)and dv =e−st dt and show
I=
∫∞
0
sin(α t)e−st dt =
α
s
[
cos(α t)
e−st
−s
∞
0
−
α
sI
]
This last equation simplifies to
(1 +
α^2
s^2 )I=
α
s^2 or I=
∫∞
0
sin(α t)e−st dt =L{ sin(α t); t→s}=
α
s^2 +α^2