Example 12-12. Laplace transform
Find the Laplace transform of eαt
Solution
By definition L
{
eαt ; t→s
}
=
∫∞
0
eαte−st dt =
∫∞
0
e−(s−α)tdt Scale the integral
to obtain
L
{
eαt
}
=
1
s−α
∫∞
0
e−udu, u = (s−α)t
to obtain
L
{
eαt
}
=^1
s−α
[
−e−u
]∞
0 =
1
s−α
Tlim→∞
[
−e−T−(−e^0 )
]
which produces the result
L
{
eαt
}
=
1
s−α provided that s > α
Using various integration techniques one can verify the following short table of
Laplace transforms.
Short Table of Laplace Transforms
Function f(t) Laplace Transform L{ f(t)}=F(s)
f(t) = L−^1 {F(s)} F(s)
(^11) s
t s^12
t^2 s2! 3
tn−^1 (ns−n1)! n= 1, 2 , 3 ,...
eα t s−^1 α
t eα t (s−^1 α) 2
tn−^1 eα t ((sn−−α1)!)n n= 1, 2 , 3 ,...
tk−^1 eα t (sΓ(−αk))k, k > 0
sin(α t) s (^2) +αα 2
cos(α t) s (^2) +sα 2
sinh(α t) s (^2) −αα 2
cosh(α t) s (^2) −sα 2