Example 12-12. Laplace transform
Find the Laplace transform of eαt
Solution
By definition L
{
eαt ; t→s}
=∫∞0eαte−st dt =∫∞0e−(s−α)tdt Scale the integral
to obtain
L{
eαt}
=1
s−α∫∞0e−udu, u = (s−α)tto obtain
L{
eαt}
=^1
s−α[
−e−u]∞
0 =1
s−α
Tlim→∞[
−e−T−(−e^0 )]which produces the result
L{
eαt}
=1s−α provided that s > α
Using various integration techniques one can verify the following short table of
Laplace transforms.
Short Table of Laplace TransformsFunction f(t) Laplace Transform L{ f(t)}=F(s)f(t) = L−^1 {F(s)} F(s)(^11) s
t s^12
t^2 s2! 3
tn−^1 (ns−n1)! n= 1, 2 , 3 ,...
eα t s−^1 α
t eα t (s−^1 α) 2
tn−^1 eα t ((sn−−α1)!)n n= 1, 2 , 3 ,...
tk−^1 eα t (sΓ(−αk))k, k > 0
sin(α t) s (^2) +αα 2
cos(α t) s (^2) +sα 2
sinh(α t) s (^2) −αα 2
cosh(α t) s (^2) −sα 2