Example 12-14. First shift property
If F(s) = L{f(t)}, show that L
{
eatf(t)}=F(s−a)or eatf(t) = L−^1 {F(s−a)}
Solution
By definition
F(s) = L{ f(t)}=∫∞0f(t)e−st dtso that if one replaces sby s−athere results
F(s−a) =∫∞0f(t)e−(s−a)tdt =∫∞0eatf(t)e−stdt =L{
eatf(t)}or
L−^1 {F(s−a)}=eatf(t)Example 12-15. (Second shift property)
If F(s) = L{f(t)}, show L{ f(t−α)H(t−α)}=e−αsF(s)or
f(t−α)H(t−α) = L−^1{
e−αsF(s)}where H(t)is the Heaviside step function defined by
H(t) ={ 0 , t < 01 , t > 0
Solution
By definition
F(s) =∫∞0f(t)e−st dtso that replacing tby uand then multiplying by e−αs one finds
e−αsF(s) =∫ ∞0f(u)e−su e−αs du =∫∞0f(u)e−s(u+α)duMake the change of variables t=u+αwith dt =du and then calculate the appropriate
limits of integration to show
e−αsF(s) =∫∞t=αf(t−α)e−stdt =∫a0(0) ·f(t−α)e−st dt +∫∞α(1) ·f(t−α)dtThis last integral has the more compact form
e−αsF(s) =∫∞0f(t−α)H(t−α)e−st dt =L{f(t−α)H(t−α)}or
L−^1{
e−αsF(s)}
=f(t−α)H(t−α)