Example 12-14. First shift property
If F(s) = L{f(t)}, show that L
{
eatf(t)
}
=F(s−a)or eatf(t) = L−^1 {F(s−a)}
Solution
By definition
F(s) = L{ f(t)}=
∫∞
0
f(t)e−st dt
so that if one replaces sby s−athere results
F(s−a) =
∫∞
0
f(t)e−(s−a)tdt =
∫∞
0
eatf(t)e−stdt =L
{
eatf(t)
}
or
L−^1 {F(s−a)}=eatf(t)
Example 12-15. (Second shift property)
If F(s) = L{f(t)}, show L{ f(t−α)H(t−α)}=e−αsF(s)or
f(t−α)H(t−α) = L−^1
{
e−αsF(s)
}
where H(t)is the Heaviside step function defined by
H(t) =
{ 0 , t < 0
1 , t > 0
Solution
By definition
F(s) =
∫∞
0
f(t)e−st dt
so that replacing tby uand then multiplying by e−αs one finds
e−αsF(s) =
∫ ∞
0
f(u)e−su e−αs du =
∫∞
0
f(u)e−s(u+α)du
Make the change of variables t=u+αwith dt =du and then calculate the appropriate
limits of integration to show
e−αsF(s) =
∫∞
t=α
f(t−α)e−stdt =
∫a
0
(0) ·f(t−α)e−st dt +
∫∞
α
(1) ·f(t−α)dt
This last integral has the more compact form
e−αsF(s) =
∫∞
0
f(t−α)H(t−α)e−st dt =L{f(t−α)H(t−α)}
or
L−^1
{
e−αsF(s)
}
=f(t−α)H(t−α)