Begin2.DVI

(Ben Green) #1
Properties of the Laplace Transform

Function f(t) Laplace Transform F(s) Comment

c 1 f(t) c 1 F(s) linearity property

f′(t) sF (s)−f(0 +) Derivative property

f′′(t) s^2 F(s)−sf (0 +)−f′(0+) Derivative property

f(n)(t)

snF(s)−sn−^1 f(0 +)−
···− sf (n−2)(0 +)−f(n−1)(0 +)

Derivative property

∫t
0 f(τ)dτ

1

sF(s) s >^0 Integration transform

c 1 f(t) + c 2 g(t) c 1 F(s) + c 2 G(s) linearity property

tf (t) −F′(s) multiplication by t property

t^2 f(t) (−1)^2 F′′(s)

tnf(t) (−1)nF(n)(s)

eαtf(t) F(s−α) First shift property

1
tf(t)

∫∞

s F(s)ds Division by tproperty

f(t−α)H(t−α) e−αsF(s) Second shift property

1
αf(

t

α) F(αs) scaling property

1
αe

βt/α f(t

α) f(αs −β) shifting scaling

f(t+p) = f(t) 1 −e^1 −ps

∫p

0 e−stf(t)dt periodic property

∫t


0 f(t−τ)g(τ)dτ F(s)G(s) Convolution property
Free download pdf