Table 12.1 Short Table of Integrals
1.
∫
zndz =z
n+1
n+ 1
+c, n =− 1 11.
∫
sinh z dz = cosh z+c
2.
∫ dz
z = log z+c 12.
∫
cosh z dz = sinh z+c
3.
∫
ezdz =ez+c 13.
∫
tanh z dz = log ( cosh z) + c
4.
∫
kzdz =
kz
log k+c, k is a constant 14.
∫
sech^2 z dz = tanh z+c
5.
∫
sin z dz =−cos z+c 15.
∫ dz
√z (^2) +α 2 = log (z+
√
z^2 +α^2 ) + c
6.
∫
cos z dz = sin z+c 16.
∫ dz
z^2 +α^2 =
1
αtan
− 1 z
α+c
7.
∫
tan z dz = log sec z+c=−log cos z+c 17.
∫ dz
z^2 −α^2 =
1
2 αlog
(z−α
z+α
)
+c
8.
∫
sec^2 z dz = tan z+c 18.
∫ dz
√α (^2) −z 2 = sin −^1 zα+c
9.
∫
sec ztan z dz = sec z+c 19.
∫
eαz sin βz dz =eαz αsin βzα 2 −+ββ 2 cos βz +c
10.
∫
csc zcot z dz =−csc z+c 20.
∫
eαz cos βz dz =eαz αcos βzα 2 ++ββ 2 sin βz +c
c denotes an arbitrary constant of integration
Definite integrals
The definite integral of a complex function f(t) = u(t) + iv (t)which is continuous
for ta≤t≤tbhas the form
∫tb
ta
f(t)dt =
∫tb
ta
u(t)dt +i
∫tb
ta
v(t)dt (12.189)
and has the following properties.
1. The integral of a linear combination of functions is a linear combination of the
integrals of the functions or
∫tb
ta
[c 1 f(t) + c 2 g(t)] dt =c 1
∫tb
ta
f(t)dt +c 2
∫tb
ta
g(t)dt