Binomial Expansion
Forn= 1, 2 , 3 ,...an integer, then
(x+y)n=xn+nxn−^1 y+n(n−1)
2!
xn−^2 y^2 +n(n−1)(n−2)
3!
xn−^3 y^3 +···+yn
wheren!is read n factorial and is defined
n! =n(n−1)(n−2)··· 3 · 2 · 1 and0! = 1by definition.
Binomial Coefficients
The binomial coefficients can also be defined by the expression
(
n
k
)
= n!
k!(n−k)!
wheren! =n(n−1)(n−2)··· 3 · 2 · 1
where forn = 1, 2 , 3 ,...is an integer. The binomial expansion has the alternative
representation
(x+y)n=
(
n
0
)
xn+
(
n
1
)
xn−^1 y+
(
n
2
)
xn−^2 y^2 +
(
n
3
)
xn−^3 y^3 ···+
(
n
n
)
yn
Laws of Exponents
Letsandtdenote real numbers and letmandndenote positive integers.
For nonzero values ofxandy
x^0 = 1, x 6 = 0
xsxt=xs+t
xs
xt
=xs−t
(xs)t=xst
(xy)s=xsys
x−s=^1
xs
x^1 /n=n
√
x
xm/n=n
√
xm
(
x
y
) 1 /n
=x
1 /n
y^1 /n
=
√nx
√ny
Laws of Logarithms
Ifx=byandb 6 = 0, then one can writey= logbx, wherey is called the logarithm
ofxto the baseb. ForP > 0 andQ > 0 , logarithms satisfy the following properties
logb(PQ) = logbP+ logbQ
logb
P
Q= logbP−logbQ
logbQP=PlogbQ