Begin2.DVI

(Ben Green) #1
Binomial Expansion
Forn= 1, 2 , 3 ,...an integer, then

(x+y)n=xn+nxn−^1 y+n(n−1)
2!

xn−^2 y^2 +n(n−1)(n−2)
3!

xn−^3 y^3 +···+yn

wheren!is read n factorial and is defined


n! =n(n−1)(n−2)··· 3 · 2 · 1 and0! = 1by definition.

Binomial Coefficients
The binomial coefficients can also be defined by the expression
(
n
k

)
= n!
k!(n−k)!

wheren! =n(n−1)(n−2)··· 3 · 2 · 1

where forn = 1, 2 , 3 ,...is an integer. The binomial expansion has the alternative


representation


(x+y)n=

(
n
0

)
xn+

(
n
1

)
xn−^1 y+

(
n
2

)
xn−^2 y^2 +

(
n
3

)
xn−^3 y^3 ···+

(
n
n

)
yn

Laws of Exponents
Letsandtdenote real numbers and letmandndenote positive integers.

For nonzero values ofxandy


x^0 = 1, x 6 = 0
xsxt=xs+t
xs
xt

=xs−t

(xs)t=xst
(xy)s=xsys
x−s=^1
xs

x^1 /n=n


x
xm/n=n


xm
(
x
y

) 1 /n
=x

1 /n
y^1 /n

=

√nx
√ny

Laws of Logarithms
Ifx=byandb 6 = 0, then one can writey= logbx, wherey is called the logarithm

ofxto the baseb. ForP > 0 andQ > 0 , logarithms satisfy the following properties


logb(PQ) = logbP+ logbQ

logb

P
Q= logbP−logbQ
logbQP=PlogbQ
Free download pdf