Begin2.DVI

(Ben Green) #1
8.

∫ u′(x)dx
u(x) = ln|u(x)|+C

9.


(αu(x) +β)nu′(x)dx=(αu(x) +β)

n+1
α(n+ 1) +C

10.

∫ u′(x)v(x)−v′(x)u(x)
v^2 (x) dx=

u(x)
v(x)+C





∫ u′(x)v(x)−u(x)v′(x)
u(x)v(x) dx= ln|

u(x)
v(x)|+C





∫ u′(x)v(x)−u(x)v′(x)
u^2 (x) +v^2 (x) dx= tan

− 1 u(x)
v(x)+C





∫ u′(x)v(x)−u(x)v′(x)
u^2 (x)−v^2 (x) dx=

1
2 ln|

u(x)−v(x)
u(x) +v(x)|+C





∫ u′(x)dx

u^2 (x) +α

= ln|u(x) +


u^2 (x) +α|+C





∫ u(x)dx
(u(x) +α)(u(x) +β)=






α
α−β

∫ dx
u(x) +α−

β
α−β

∫ dx

∫ u(x) +β, α^6 =β
dx
u(x) +α−α

∫ dx
(u(x) +α)^2 , β=α





∫ u′(x)dx
αu^2 (x) +βu(x)=

1
βln|

u(x)
αu(x) +β|+C





∫ u′(x)dx
u(x)


u^2 (x)−α^2

=α^1 sec−^1 u(αx)+C





∫ u′(x)dx
α^2 +β^2 u^2 (x)=

1
αβtan

− 1 βu(x)
α +C





∫ u′(x)dx
α^2 u^2 (x)−β^2 =

1
2 αβln|

αu(x)−β
αu(x) +β|+C






f(sinx)dx= 2


f

( 2 u
1 +u^2

) du
1 +u^2 , u= tan

x
2






f(sinx)dx=


f(u)√du
1 −u^2

, u= sinx






f(cosx)dx= 2


f

( 1 −u 2
1 +u^2

) du
1 +u^2 , u= tan

x
2






f(cosx)dx=−


f(u)√ 1 du−u 2 , u= cosx






f(sinx,cosx)dx=


f(u,


1 −u^2 )√du
1 −u^2

, u= sinx






f(sinx,cosx)dx= 2


f

(
2 u
1 +u^2 ,

1 −u^2
1 +u^2

)
du
1 +u^2 , u= tan

x
2






f(x,


α+βx)dx=^2 β


f

(u (^2) −α
β , u
)
udu, u^2 =α+βx
27.

f(x,

α^2 −x^2 )dx=α

f(αsinu, acosu) cosu du, x=αsinu
Appendix C

Free download pdf