8.
∫ u′(x)dx
u(x) = ln|u(x)|+C
9.
∫
(αu(x) +β)nu′(x)dx=(αu(x) +β)
n+1
α(n+ 1) +C
10.
∫ u′(x)v(x)−v′(x)u(x)
v^2 (x) dx=
u(x)
v(x)+C
∫ u′(x)v(x)−u(x)v′(x)
u(x)v(x) dx= ln|
u(x)
v(x)|+C
∫ u′(x)v(x)−u(x)v′(x)
u^2 (x) +v^2 (x) dx= tan
− 1 u(x)
v(x)+C
∫ u′(x)v(x)−u(x)v′(x)
u^2 (x)−v^2 (x) dx=
1
2 ln|
u(x)−v(x)
u(x) +v(x)|+C
∫ u′(x)dx
√
u^2 (x) +α
= ln|u(x) +
√
u^2 (x) +α|+C
∫ u(x)dx
(u(x) +α)(u(x) +β)=
α
α−β
∫ dx
u(x) +α−
β
α−β
∫ dx
∫ u(x) +β, α^6 =β
dx
u(x) +α−α
∫ dx
(u(x) +α)^2 , β=α
∫ u′(x)dx
αu^2 (x) +βu(x)=
1
βln|
u(x)
αu(x) +β|+C
∫ u′(x)dx
u(x)
√
u^2 (x)−α^2
=α^1 sec−^1 u(αx)+C
∫ u′(x)dx
α^2 +β^2 u^2 (x)=
1
αβtan
− 1 βu(x)
α +C
∫ u′(x)dx
α^2 u^2 (x)−β^2 =
1
2 αβln|
αu(x)−β
αu(x) +β|+C
∫
f(sinx)dx= 2
∫
f
( 2 u
1 +u^2
) du
1 +u^2 , u= tan
x
2
∫
f(sinx)dx=
∫
f(u)√du
1 −u^2
, u= sinx
∫
f(cosx)dx= 2
∫
f
( 1 −u 2
1 +u^2
) du
1 +u^2 , u= tan
x
2
∫
f(cosx)dx=−
∫
f(u)√ 1 du−u 2 , u= cosx
∫
f(sinx,cosx)dx=
∫
f(u,
√
1 −u^2 )√du
1 −u^2
, u= sinx
∫
f(sinx,cosx)dx= 2
∫
f
(
2 u
1 +u^2 ,
1 −u^2
1 +u^2
)
du
1 +u^2 , u= tan
x
2
∫
f(x,
√
α+βx)dx=^2 β
∫
f
(u (^2) −α
β , u
)
udu, u^2 =α+βx
27.
∫
f(x,
√
α^2 −x^2 )dx=α
∫
f(αsinu, acosu) cosu du, x=αsinu
Appendix C