Begin2.DVI

(Ben Green) #1
General Integrals

28.


c u(x)dx=c


u(x)dx 29.


[u(x) +v(x)]dx=


u(x)dx+


v(x)dx

30.


u(x)u′(x)dx=^12 |u(x)|^2 +C 31.


[u(x)−v(x)]dx=


u(x)dx−


v(x)dx]

32.


un(x)u′(x)dx=[u(x)]

n+1
n+ 1 +C 33.


u(x)v′(x)dx=u(x)v(x)−


u′(x)v(x)dx

34.


F′[u(x)]u′(x)dx=F[u(x)] +C 35.

∫ u′(x)
u(x)dx= ln|u(x)|+C
36.

∫ u′
2


udx=


u+C 37.


1 dx=x+C

38.


xndx=x

n+1
n+ 1+C 39.

∫ 1
xdx= ln|x|+C
40.


eauu′dx=^1 aeau+C 41.


auu′dx=ln^1 aau+C
42.


sinu u′dx= cosu+C 43.


cosu u′dx=−sinu+C

44.


tanu u′dx= ln|secu|+C 45.


cotu u′dx= ln|sinu|+C

46.


secu u′dx= ln|secu+ tanu|+C 47.


cscu u′dx= ln|cscu−cotu|+C

48.


sinhu u′dx= coshu+C 49.


coshu u′dx= sinhu+C

50.


tanhu u′dx= lncoshu+C 51.


cothu u′dx= ln sinhu+C
52.


sechu u′dx= sin−^1 (tanhu) +C 53.


cschu u′dx= lntanhu 2 +C

54.


sin^2 u u′dx=^12 u−^14 sin 2u+C 55.


cos^2 u u′dx=u 2 +^14 sin 2u+C

56.


tan^2 u u′dx= tanu−u+C 57.


cot^2 u u′dx=−cotu−u+C

58.


sec^2 u u′dx= tanu+C 59.


csc^2 u u′dx=−cotu+C

60.


sinh^2 u u′dx=^14 sinh 2u−^12 u+C 61.


cosh^2 u u′dx=^14 sinh2u+^12 u+C

62.


tanh^2 u u′dx=u−tanhu+C 63.


coth^2 u u′dx=u−cothu+C
64.


sech^2 u u′dx= tanhu+C 65.


csch^2 u u′dx=−cothu+C

66.


secutanu u′dx= secu+C 67.


cscucotu u′dx=−cscu+C

68.


sechutanhu u′dx=−sechu+C 69.


cschucothu u′dx=−cschu+C

Integrals containingX=a+bx, a 6 = 0 andb 6 = 0






Xndx= X

n+1
b(n+ 1)+C, n^6 =−^1






xXndx= X

n+2
b^2 (n+ 2)−

aXn+1
b^2 (n+ 1)+C, n^6 =−^1 , n^6 =−^2






X(x+c)ndx=n+ 2b (x+c)n+2+an−+ 1bc(x+c)n+1+C

Appendix C
Free download pdf