Begin2.DVI

(Ben Green) #1




∫ dx
x^2 X^3 =

−b
2 a^2 X−

2 b
a^3 X−

1
a^3 x+

3 b
a^4 ln|

X
x|





∫ x dx
Xn =

1
b^2

[ − 1
(n−2)Xn−^2 +

a
(n−1)Xn−^1

]
+C, n 6 = 1, 2





∫ x (^2) dx
Xn =
1
b^3
[
− 1
(n−3)Xn−^3 +
2 a
(n−2)Xn−^2 −
a^2
(n−1)Xn−^1
]
+C, n 6 = 1, 2 , 3
93.
∫ √
X dx= 32 bX^3 /^2 +C
94.

x

X dx= 152 b 2 (3bx− 2 a)X^3 /^2 +C
95.

x^2

X dx= 1052 b 3 (8a^2 − 12 abx+ 15b^2 x^2 )X^3 /^2 +C
96.
∫ √X
x dx= 2

X+a
∫ dx
x

X
97.
∫ √X
x^2 dx=−

X
x +
b
2
∫ dx
x

X
98.
∫ dx

X
=^2 b

X+C
99.
∫ x dx

X
= 32 b 2 (bx− 2 a)

X+C
100.
∫ x (^2) dx

X
= 152 b 3 (8a^2 − 4 abx+ 3b^2 x^2 )

X+C
101.
∫ dx
x

X







√^1
aln|

√X−√a
X+√a
|+C 1 , a > 0
√^2
−a
tan−^1

X
−a+C^2 , a <^0
102.
∫ dx
x^2

X
=−

X
ax −
b
2 a
∫ dx
x

X
103.

xn

X dx=(2n+ 3)^2 bxnX^3 /^2 −(2n^2 na+ 3)b

xn−^1

X dx
104.
∫ √X
xn dx=
− 1
(n−1)a
X^3 /^2
xn−^1 −
(2n−5)b
2(n−1)a
∫ √X
xn−^1 dx
105.

xm−^1 Xndx=x
mXn
m+n+
an
m+n

xm−^1 Xn−^1 dx+C
106.
∫ Xn
xm+1dx=−
Xn+1
ma xm+
n−m+ 1
m
b
a
∫ Xn
xmdx
Appendix C

Free download pdf