Begin2.DVI

(Ben Green) #1
Integrals containingX= 2ax−x^2 , a 6 = 0





∫ √
X dx=(x− 2 a)


X+a

2
2 sin

− 1

(
x−a
|a|

)
+C





∫ dx

X

= sin−^1

(x−a
|a|

)
+C






x


X dx= sin−^1

(x−a
|a|

)
+C





∫ x dx

X

=−


X+asin−^1

(
x−a
|a|

)
+C





∫ dx
X^3 /^2 =

x−a
a^2


X

+C





∫ x dx
X^3 /^2 =

x
a


X

+C





∫ dx
X =

1
2 aln|

x
x− 2 a|+C





∫ x dx
X =−ln|x−^2 a|+C
145.


∫ dx
X^2 =−

1
4 ax−

1
4 a^2 (x− 2 a)+

1
4 a^2 ln|

x
x− 2 a|+C





∫ x dx
X^2 =−

1
2 a(x− 2 a)+

1
4 a^2 ln|

x
x− 2 a|+C






xn


X dx=−n^1 + 2xn−^1 X^3 /^2 +(2nn+ 1)+ 2a


xn−^1


X dx, n 6 =− 2





∫ √X dx
xn =

1
(3− 2 n)a

X^3 /^2
xn +

n− 3
(2n−3)a

∫ √X
xn−^1 dx, n^6 = 3/^2

Integrals containingX=ax^2 +bx+cwith ∆ = 4ac−b^2 , ∆ 6 = 0, a 6 = 0





∫ dx
X =








√^1
−∆

ln

( 2 ax+b−√−∆
2 ax+b+


−∆

)
+C 1 , ∆< 0

√^2

tan−^12 ax√+b

+C 2 , ∆> 0

−a(x+^1 b/ 2 a)+C 3 , ∆ = 0





∫ x dx
X =

1
2 cln|X| −

b
2 a

∫ 1
Xdx





∫ x (^2) dx
X =
x
a−
b
2 a^2 ln|X|+
2 ac−∆
2 a^2
∫ dx
X
Appendix C

Free download pdf