Integrals containingX= 2ax−x^2 , a 6 = 0
∫ √
X dx=(x− 2 a)
√
X+a
2
2 sin
− 1
(
x−a
|a|
)
+C
∫ dx
√
X
= sin−^1
(x−a
|a|
)
+C
∫
x
√
X dx= sin−^1
(x−a
|a|
)
+C
∫ x dx
√
X
=−
√
X+asin−^1
(
x−a
|a|
)
+C
∫ dx
X^3 /^2 =
x−a
a^2
√
X
+C
∫ x dx
X^3 /^2 =
x
a
√
X
+C
∫ dx
X =
1
2 aln|
x
x− 2 a|+C
∫ x dx
X =−ln|x−^2 a|+C
145.
∫ dx
X^2 =−
1
4 ax−
1
4 a^2 (x− 2 a)+
1
4 a^2 ln|
x
x− 2 a|+C
∫ x dx
X^2 =−
1
2 a(x− 2 a)+
1
4 a^2 ln|
x
x− 2 a|+C
∫
xn
√
X dx=−n^1 + 2xn−^1 X^3 /^2 +(2nn+ 1)+ 2a
∫
xn−^1
√
X dx, n 6 =− 2
∫ √X dx
xn =
1
(3− 2 n)a
X^3 /^2
xn +
n− 3
(2n−3)a
∫ √X
xn−^1 dx, n^6 = 3/^2
Integrals containingX=ax^2 +bx+cwith ∆ = 4ac−b^2 , ∆ 6 = 0, a 6 = 0
∫ dx
X =
√^1
−∆
ln
( 2 ax+b−√−∆
2 ax+b+
√
−∆
)
+C 1 , ∆< 0
√^2
∆
tan−^12 ax√+b
∆
+C 2 , ∆> 0
−a(x+^1 b/ 2 a)+C 3 , ∆ = 0
∫ x dx
X =
1
2 cln|X| −
b
2 a
∫ 1
Xdx
∫ x (^2) dx
X =
x
a−
b
2 a^2 ln|X|+
2 ac−∆
2 a^2
∫ dx
X
Appendix C