Begin2.DVI

(Ben Green) #1




∫ dx
a^2 −b^2 cos^2 x=





1
a


a^2 −b^2

tan−^1

( a

a^2 −b^2

tanx

)
+C, a > b
− 1
a√b^2 −a^2 tanh

− 1 (√ a
b^2 −a^2 tanx

)
+C, b > a





∫ dx
(acosx+bsinx)^2 =

1
a^2 +b^2 tan

(
x−tan−^1 ab

)
+C





∫ sinx dx

acos^2 x+ 2bcosx+c

=











√−^1
−asin

− 1

(√
−a(acos√^2 x+ 2bcosx+c)
b^2 −ac

)
+C, b^2 > ac, a < 0

√−^1
asinh

− 1

(√
a(acos√^2 x+ 2bcosx+c)
b^2 −ac

)
+C, b^2 > ac, a > 0

√−^1
acosh

− 1

(√
a(acos√^2 x+ 2bcosx+c)
ac−b^2

)
+C, b^2 < ac, a > 0





∫ cosx dx

asin^2 x+ 2bsinx+c

=














√^1
−asin

− 1




−a(asin^2 x+ 2bsinx+c)

b^2 −ac


+C, b^2 > ac, a < 0

√^1
asinh

− 1




a(asin^2 x+ 2bsinx+c)

b^2 −ac


+C, b^2 > ac, a > 0

√^1
acosh

− 1




a(asin^2 x+ 2bsinx+c)

ac−b^2


+C, b^2 < ac, a > 0

Integrals containing tanax, cotax, secax, cscax

Write integrals in terms ofsinaxandcosaxand see previous listings.
Integrals containing inverse trigonmetric functions






sin−^1 xadx=xsin−^1 xa+


a^2 −x^2 +C






cos−^1 xadx=xcos−^1 xa−


a^2 −x^2 +C






tan−^1 xadx=xtan−^1 xa−a 2 ln|x^2 +a^2 |+C






cot−^1 xadx=xcot−^1 xa+a 2 ln|x^2 +a^2 |+C






sec−^1 xadx=




xsec−^1 xa−aln|x+


x^2 −a^2 |+C, 0 <sec−^1 xa< π/ 2
xsec−^1 xa+aln|x+


x^2 −a^2 +C, π/ 2 <sec−^1 xa< π






csc−^1 xadx=




xcsc−^1 xa+aln|x+


x^2 −a^2 |+C, 0 <csc−^1 xa< π/ 2
xcsc−^1 xa−aln|x+


x^2 −a^2 |+C, −π/ 2 <csc−^1 xa< 0






xsin−^1 xadx=

(x 2
2 −

a^2
4

)
sin−^1 xa+^14 x


a^2 −x^2 +C






xcos−^1 xadx=

(x 2
2 −

a^2
4

)
cos−^1 xa−^14 x


a^2 −x^2 +C

Appendix C
Free download pdf