Begin2.DVI

(Ben Green) #1





xtan−^1 xadx=^12 (x^2 +a^2 ) tan−^1 xa−a 2 ln|x^2 +a^2 |+C






xcot−^1 xadx=^12 (x^2 +a^2 ) cot−^1 xa+a 2 x+C






xsec−^1 xadx=





1
2 x

(^2) sec− 1 x
a−
a
2

x^2 −a^2 +C, 0 <sec−^1 xa< π/ 2
1
2 x
(^2) sec− 1 x
a+
a
2

x^2 −a^2 +C, π/ 2 <sec−^1 xa< π
526.

xcsc−^1 xadx=



1
2 x
(^2) csc− 1 x
a+
a
2

x^2 −a^2 +C, 0 <csc−^1 xa< π/ 2
1
2 x
(^2) csc− 1 x
a−
a
2

x^2 −a^2 +C, −π/ 2 <csc−^1 xa< 0
527.

x^2 sin−^1 xadx=^13 x^3 sin−^1 xa+^19 (x^2 + 2a^2 )

a^2 −x^2 +C
528.

x^2 cos−^1 xadx=^13 x^3 cos−^1 xa−^19 (x^2 + 2a^2 )

a^2 −x^2 +C
529.

x^2 tan−^1 xadx=^13 tan−^1 xa−a 6 x^2 +a
3
6 ln|x
(^2) +a (^2) |+C
530.

x^2 cot−^1 xadx=^13 cot−^1 xa+a 6 x^2 −a
3
6 ln|a
(^2) +x (^2) |+C
531.

x^2 sec−^1 xadx=



1
3 x
(^3) sec− 1 x
a−
a
6 x

x^2 −a^2 −a
3
6 ln|x+

x^2 −a^2 |+C, 0 <sec−^1 xa< π/ 2
1
3 x
(^3) sec− 1 x
a+
a
6 x

x^2 −a^2 +a
3
6 ln|x+

x^2 −a^2 |+c, π/ 2 <sec−^1 xa< π
532.

x^2 csc−^1 xadx=



1
3 x
(^3) csc− 1 x
a+
a
6 x

x^2 −a^2 +a
3
6 ln|x+

x^2 −a^2 |+C, 0 <csc−^1 xa< π/ 2
1
3 x
(^3) csc− 1 x
a−
a
6 x

x^2 −a^2 −a
3
6 ln|x+

x^2 −a^2 |+C, −π/ 2 <csc−^1 xa< 0
533.
∫ 1
xsin
− 1 x
adx=
x
a+
1
2 · 3 · 3
(x
a
) 3



  • 2 ·^14 ··^35 · 5
    (x
    a
    ) 5

  • 2 ·^14 ··^36 ··^57 · 7 +···+C



  1. ∫ 1
    xcos
    − 1 x
    adx=
    π
    2 ln|x|+−
    ∫ 1
    xsin
    − 1 x
    adx


  2. ∫ 1
    xtan
    − 1 x
    adx=
    x
    a−
    1
    32
    (x
    a
    ) 3





  • 512
    (x
    a
    ) 5
    − 712
    (x
    a
    ) 7
    +···+C



  1. ∫ 1
    xcot
    − 1 x
    adx=
    π
    2 ln|x|−
    ∫ 1
    xtan
    − 1 x
    adx


  2. ∫ 1
    xsec
    − 1 x
    adx=
    π
    2 ln|x|+
    a
    x+
    1
    2 · 3 · 3
    (x
    a
    ) 3





  • 2 ·^14 ··^35 · 5
    (x
    a
    ) 5

  • 2 ·^14 ·· 63 ··^57 · 7
    (x
    a
    ) 7
    +···+C
    Appendix C

Free download pdf