Begin2.DVI

(Ben Green) #1





eaxsin^2 bx dx=

(a (^2) + 4b (^2) −a (^2) cos(2bx)− 2 absin(2bx)
2 a(a^2 + 4b^2
)
eax+C
569.

eaxcos^2 bx dx=
(a (^2) + 4b (^2) +a (^2) cos(2bx) + 2absin(2bx)
2 a(a^2 + 4b^2
)
eax+C
Integrals containing the logarithmic function
570.

lnx dx=xln|x|+C
571.

xlnx dx=^12 x^2 ln|x|−^14 x^2 +C
572.

xnlnx dx=(n+ 1)^12 xn+1+n+ 1^1 xn+1ln|x|+C, n 6 =− 1
573.
∫ 1
xlnx dx=
1
2 (ln|x|)
(^2) +C
574.
∫ dx
xlnx= ln|ln|x||+C
575.
∫ 1
x^2 lnx dx=−
1
x−
1
xln|x|+C
576.

(ln|x|)^2 dx=x(ln|x|)^2 − 2 xln|x|+ 2x+C
577.
∫ 1
x(ln|x|)
ndx=^1
n+ 1(ln|x|)
n+1+C, n 6 =− 1
578.

(ln|x|)ndx=x(ln|x|)n−n

(ln|x|)n−^1 dx
579.

ln|x^2 +a^2 |dx=xln|x^2 +a^2 |− 2 x+ 2atan−^1 xa+C
580.

ln|x^2 −a^2 |dx=xln|x^2 −a^2 |− 2 x+aln|xx−+aa|+C
581.

(ax+b) ln(βx+γ)dx=β
(^2) (ax+b) (^2) −(bβ−aγ) 2
2 aβ^2 ln(βx+γ)−
a
4 β^2 (βx+γ)
(^2) −^1
β(bβ−aγ)x+C
582.

(lnax)^2 dx=x(lnax)^2 − 2 xlnax+ 2x+C
Integrals containing the hyperbolic function sinhax
583.

sinhax dx=a^1 coshax+C
Appendix C

Free download pdf