Begin2.DVI

(Ben Green) #1





xsinhax dx=^1 axcoshax−a^12 sinhax+C






x^2 sinhax dx=

(
x^2
a +

2
a^3

)
coshax−^2 ax 2 sinhax+C






xnsinhax dx=^1 axncoshax−na


xn−^1 coshax dx





∫ 1
xsinhax dx=ax+

(ax)^3
3 ·3!+

(ax)^5
4 ·5!+···+C





∫ 1
x^2 sinhax dx=−

1
xsinhax+a

∫ 1
xcoshax dx





∫ 1
xnsinhax dx=−

sinhax
(n−1)xn−^1 +

a
n− 1

∫ 1
xn−^1 coshax dx





∫ dx
sinhax=

1
aln|tanh

ax
2 |+C





∫ x dx
sinhax=

1
a^2

[
ax−(ax)

3
18 +frac7(ax)

(^5) 1800 +···+ (−1)n2(2^2 n−1)Bna^2 n+1x^2 n+1
(2n+ 1)! +···
]
+C
592.

sinh^2 ax dx= 21 axsinh2ax−^12 x+C
593.

sinhnax dx=na^1 sinhn−^1 axcoshax−n−n^1

sinhn−^2 ax dx
594.

xsinh^2 ax dx= 41 axsinh 2ax− 81 a 2 cosh 2ax−^14 x^2 +C
595.
∫ dx
sinh^2 ax
=−^1 acothax+C
596.
∫ dx
sinh^3 ax
=− 21 acschaxcothax− 21 aln|tanhax 2 |+C
597.
∫ x dx
sinh^2 ax
=−^1 axcothax+a^12 ln|sinhax|+C
598.

sinhaxsinhbx dx=2(a^1 +b)sinh(a+b)x−2(a^1 −b)sinh(a−b)x+C
599.

sinhaxsinbx dx=a (^2) +^1 b 2 [acoshaxsinbx−bsinhaxcosbx] +C
600.

sinhaxcosbx dx=a (^2) +^1 b 2 [acoshaxcosbx+bsinhaxsinbx] +C
Appendix C

Free download pdf