Begin2.DVI

(Ben Green) #1




∫ dx
α+βsinhax=
√^1
α^2 +β^2

ln

∣∣
∣∣

βeax+α−


α^2 +β^2
βeax+α+


α^2 +β^2

∣∣
∣∣
∣+C





∫ dx
(α+βsinhax)^2 =

−β
a(α^2 +β^2 )

coshax
α+βsinhax+

α
α^2 +β^2

∫ dx
α+βsinhax





∫ dx
α^2 +β^2 sinh^2 ax=







1


β^2 −α^2

tan−^1

(√
β^2 −α^2 tanhax
α

)
+C, β^2 > α^2

1
2 aα


α^2 −β^2

ln

∣∣
∣∣

α+


α^2 −β^2 tanhax
α−


α^2 −β^2 tanhax

∣∣
∣∣
∣+C, β

(^2) < α 2
604.
∫ dx
α^2 −β^2 sinh^2 ax
=^1
2 aα

α^2 +β^2
ln
∣∣
∣∣

α+

α^2 +β^2 tanhax
α−

α^2 +β^2 tanhax
∣∣
∣∣
∣+C
Integrals containing the hyperbolic function coshax
605.

coshax dx=^1 asinhax+C
606.

xcoshax dx=^1 axsinhax−a^12 coshax+C
607.

x^2 coshax dx=−a^22 xcoshax+
(x 2
a +
2
a^3
)
sinhax+C
608.

xncoshax dx=a^1 xnsinhax−na

xn−^1 sinhax dx
609.
∫ 1
xcoshax dx= ln|x|+
(ax)^2
2 ·2!+
(ax)^4
4 ·4!+
(ax)^6
6 ·6!+···+C
610.
∫ 1
x^2 coshax dx=−
1
xcoshax+a
∫ 1
xsinhax dx
611.
∫ 1
xncoshax dx=−
1
n− 1
coshax
xn−^1 +
a
n− 1
∫ sinhax
xn−^1 dx, n >^1
612.
∫ dx
coshax=
2
atan
− (^1) eax+C
613.
∫ x dx
coshax=
1
a^2
[a (^2) x 2
2 −
a^4 x^4
8 +
5 a^6 x^6
144 +···+ (−1)
nEna^2 n+2x^2 n+2
(2n+ 2)·(2n)!+···
]
+C
614.

cosh^2 ax dx=^12 x+^12 sinhaxcoshax+C
615.

coshnax dx=na^1 coshn−^1 axsinhax+n−n^1

coshn−^2 ax dx
616.

xcosh^2 ax dx=^14 x^2 + 41 axsinh2ax− 8 a^12 cosh 2ax+C
Appendix C

Free download pdf