Begin2.DVI

(Ben Green) #1

  1. IfSm=



xmsinnx dxandCm=


xmcosnx dx, then

Sm=−n^1 xmcosnx+mnCm− 1 and Cm=^1 nxmsinnx−mnSm− 1


  1. IfI 1 =



tanx dx, andIn=


tannx dx, then In=n−^11 tann−^1 x−In− 2 , n= 2, 3 , 4 ,...


  1. IfIn=


∫ sinnax
cosaxdx, thenIn=−

sinn−^1 ax
(n−1)a +In−^2


  1. IfIn=


∫ cosnax
sinax dx, thenIn=

cosn−^1 ax
(n−1)a +In−^2


  1. IfIn,m=



sinnxcosmx dx, then

In,m=n−+^1 msinn−^1 xcosm+1x+nn+−m^1 In− 2 ,m

In,m=n+ 1^1 sinn+1xcosm+1x+n+nm+ 1+ 2In+2,m

In,m=n+^1 msinn+1xcosm−^1 x+mn+−m^1 In,m+2

In,m=m−+ 1^1 sinn+1xcosm+1x+n+mm+ 1+ 2In,m+2

In,m=m−+ 1^1 sinn−^1 xcosm+1x+mn−+ 1^1 In− 2 ,m+2

In,m=n+ 1^1 sinn+1xcosm−^1 x+mn+ 1−^1 In+2,m− 2


  1. IfSn=



eaxsinnbx dxandCn=


eaxcosnbx dx, then

Cn=eaxcosn−^1 bx

[
acosbx+nbsinbx
a^2 +n^2 b^2

]
+n(n−1)b

2
a^2 +n^2 b^2 Cn−^2
Sn=eaxsinn−^1 ax

[
asinbx−nbcosnx
a^2 +n^2 b^2

]
+n(n−1)b

2
a^2 +n^2 b^2 Sn−^2


  1. IfIn=



xm(lnx)ndx, thenIn=m^1 + 1xm+1(lnx)n−mn+ 1In− 1

Integrals involving Bessel functions






J 1 (x)dx=−J 0 (x) +C






xJ 1 (x)dx=−xJ 0 (x) +


J 0 (x)dx






xnJ 1 (x)dx=−xnJ 0 (x) +n


xn−^1 J 0 (x)dx

Appendix C
Free download pdf