Begin2.DVI

(Ben Green) #1




∫ J
1 (x)
x dx=−J^1 (x) +


J 0 (x)dx






xνJν− 1 (x)dx=xνJν(x) +C






x−νJν+1(x)dx=x−νJν(x) +C





∫ J
1 (x)
xn dx=

− 1
n

J 1 (x)
xn−^1 +

1
n

∫ J
0 (x)
xn−^1 dx






xJ 0 (x)dx=xJ 1 (x) +C






x^2 J 0 (x)dx=x^2 J 1 (x) +xJ 0 (x)−


J 0 (x)dx






xnJ 0 (x)dx=xnJ 1 (x) + (n−1)xn−^1 J 0 (x)−(n−1)^2


xn−^2 J 0 (x)dx





∫ J
0 (x)
xn dx=

J 1 (x)
(n−1)^2 xn−^2 −

J 0 (x)
(n−1)xn−^1 −

1
(n−1)^2

∫ J
0 (x)
xn−^2 dx






Jn+1(x)dx=


Jn− 1 (x)dx− 2 Jn(x)






xJn(αx)Jn(βx)dx=β (^2) −xα 2 [αJn′(αx)Jn(βx)−βJn′(βx)Jn(αx)] +C



  1. IfIm,n=



xmJn(x)dx, m≥−n, then

Im,n=−xmJn− 1 (x) + (m+n−1)Im− 1 ,n− 1


  1. IfIn, 0 =



xnJ 0 (x)dx, thenIn, 0 =xnJ 1 (x) + (n−1)xn−^1 J 0 (x)−(n−1)^2 In− 2 , 0 Note that

I 1 , 0 =



xJ 0 (x)dx=xJ 1 (x) +CandI 0 , 1 =


J 1 (x)dx=−J 0 (x) +C Note also that the integral

I 0 , 0 =



J 0 (x)dxcannot be given in closed form.

Appendix C
Free download pdf