∫ J
1 (x)
x dx=−J^1 (x) +
∫
J 0 (x)dx
∫
xνJν− 1 (x)dx=xνJν(x) +C
∫
x−νJν+1(x)dx=x−νJν(x) +C
∫ J
1 (x)
xn dx=
− 1
n
J 1 (x)
xn−^1 +
1
n
∫ J
0 (x)
xn−^1 dx
∫
xJ 0 (x)dx=xJ 1 (x) +C
∫
x^2 J 0 (x)dx=x^2 J 1 (x) +xJ 0 (x)−
∫
J 0 (x)dx
∫
xnJ 0 (x)dx=xnJ 1 (x) + (n−1)xn−^1 J 0 (x)−(n−1)^2
∫
xn−^2 J 0 (x)dx
∫ J
0 (x)
xn dx=
J 1 (x)
(n−1)^2 xn−^2 −
J 0 (x)
(n−1)xn−^1 −
1
(n−1)^2
∫ J
0 (x)
xn−^2 dx
∫
Jn+1(x)dx=
∫
Jn− 1 (x)dx− 2 Jn(x)
∫
xJn(αx)Jn(βx)dx=β (^2) −xα 2 [αJn′(αx)Jn(βx)−βJn′(βx)Jn(αx)] +C
- IfIm,n=
∫
xmJn(x)dx, m≥−n, then
Im,n=−xmJn− 1 (x) + (m+n−1)Im− 1 ,n− 1
- IfIn, 0 =
∫
xnJ 0 (x)dx, thenIn, 0 =xnJ 1 (x) + (n−1)xn−^1 J 0 (x)−(n−1)^2 In− 2 , 0 Note that
I 1 , 0 =
∫
xJ 0 (x)dx=xJ 1 (x) +CandI 0 , 1 =
∫
J 1 (x)dx=−J 0 (x) +C Note also that the integral
I 0 , 0 =
∫
J 0 (x)dxcannot be given in closed form.
Appendix C