Definite integralsGeneral integration properties
- IfdFdx(x)=f(x), then
∫b
af(x)dx=F(x)|ba=F(b)−F(a)- ∫∞
0f(x)dx= limb→∞∫b0f(x)dx,∫∞−∞f(x)dx= limb→∞
a→−∞∫baf(x)dx- Iff(x)has a singular point atx=b, then
∫baf(x)dx= lim→ 0∫b−af(x)dx- Iff(x)has a singular point atx=a, then
∫b
af(x)dx= lim→ 0∫b
a+f(x)dx- Iff(x)has a singular point atx=c,a < c < b, then
∫baf(x)dx=∫c−af(x)dx+∫bc+f(x)dx6.
∫b
acf(x)dx=c∫b
af(x)dx, cconstant
∫aaf(x)dx=0,
∫b0f(x)dx=∫b0f(b−x)dx∫baf(x)dx=−∫abf(x)dx,
∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx- Mean value theorems
∫b
af(x)dx=f(c)(b−a), a≤c≤b
∫baf(x)g(x)dx=f(c)∫bag(x)dx, g(x)≥ 0 , a≤c≤b
∫baf(x)g(x)dx=f(a)∫ξag(x)dx∫baf(x)g(x)dx=f(b)∫bηg(x)dxa < ξ < b a < η < b
The last mean value theorem requires thatf(x)be monotone increasing and nonnegative
throughout the interval(a, b)- Numerical integration
Divide the interval(a, b)intonequal parts by defining a step sizeh=b−na.
Two numerical integration schemes are
(a) Trapezoidal rule with global error−(b− 12 a)h^2 f′′(ξ)fora < ξ < b.
∫baf(x)dx=h 2 [f(x 0 ) + 2f(x 1 ) + 2f(x 2 ) +··· 2 f(xn− 1 ) +f(xn)](b) Simpson’s 1/3 rule with global error−(b 90 −a)h^4 f(iv)(ξ)fora < ξ < b.
∫b
af(x)dx=^23 h[f(x 0 ) + 4f(x 1 ) + 2f(x 2 ) + 4f(x 3 ) + 2f(x 4 ) +···+ 2f(xn− 2 ) + 4f(xn− 1 ) +f(xn)]Appendix C