Definite integrals
General integration properties
- IfdFdx(x)=f(x), then
∫b
a
f(x)dx=F(x)|ba=F(b)−F(a)
- ∫∞
0
f(x)dx= limb→∞
∫b
0
f(x)dx,
∫∞
−∞
f(x)dx= limb→∞
a→−∞
∫b
a
f(x)dx
- Iff(x)has a singular point atx=b, then
∫b
a
f(x)dx= lim→ 0
∫b−
a
f(x)dx
- Iff(x)has a singular point atx=a, then
∫b
a
f(x)dx= lim→ 0
∫b
a+
f(x)dx
- Iff(x)has a singular point atx=c,a < c < b, then
∫b
a
f(x)dx=
∫c−
a
f(x)dx+
∫b
c+
f(x)dx
6.
∫b
a
cf(x)dx=c
∫b
a
f(x)dx, cconstant
∫a
a
f(x)dx=0,
∫b
0
f(x)dx=
∫b
0
f(b−x)dx
∫b
a
f(x)dx=−
∫a
b
f(x)dx,
∫b
a
f(x)dx=
∫c
a
f(x)dx+
∫b
c
f(x)dx
- Mean value theorems
∫b
a
f(x)dx=f(c)(b−a), a≤c≤b
∫b
a
f(x)g(x)dx=f(c)
∫b
a
g(x)dx, g(x)≥ 0 , a≤c≤b
∫b
a
f(x)g(x)dx=f(a)
∫ξ
a
g(x)dx
∫b
a
f(x)g(x)dx=f(b)
∫b
η
g(x)dx
a < ξ < b a < η < b
The last mean value theorem requires thatf(x)be monotone increasing and nonnegative
throughout the interval(a, b)
- Numerical integration
Divide the interval(a, b)intonequal parts by defining a step sizeh=b−na.
Two numerical integration schemes are
(a) Trapezoidal rule with global error−(b− 12 a)h^2 f′′(ξ)fora < ξ < b.
∫b
a
f(x)dx=h 2 [f(x 0 ) + 2f(x 1 ) + 2f(x 2 ) +··· 2 f(xn− 1 ) +f(xn)]
(b) Simpson’s 1/3 rule with global error−(b 90 −a)h^4 f(iv)(ξ)fora < ξ < b.
∫b
a
f(x)dx=^23 h[f(x 0 ) + 4f(x 1 ) + 2f(x 2 ) + 4f(x 3 ) + 2f(x 4 ) +···+ 2f(xn− 2 ) + 4f(xn− 1 ) +f(xn)]
Appendix C