Begin2.DVI

(Ben Green) #1

  1. Iff(x)is periodic with periodL, thenf(x+L) =f(x)for allxand


∫nL

0

f(x)dx=n

∫L

0

f(x)dx,
for integer values ofn.


  1. ∫x


0

dx

∫x

0

dx···

∫x

︸ ︷︷^0 ︸
n integration signs

dx f(x) =(n−^1 1)!

∫x

0

(x−u)n−^1 f(u)du

Integrals containing algebraic terms

11.

∫ 1

0

xm−^1 (1−x)n−^1 dx=B(m, n) =Γ(Γ(mm)Γ(+nn)), m > 0 , n > 0

12.

∫ 1

0

√dx
1 −x^4

=^1
4


2 π

[
Γ(^14 )

] 2

13.

∫ 1
0

dx
(1−x^2 n)n/^2

= 2 nsinπ π
2 n

14.

∫ 1
0

1
β−αx
√ dx
x(1−x)

=√ π
β(β−α)

15.

∫ 1
0

xp−x−p
xq−x−q

dx
x =

π
2 qtan


2 q, |p|< q

16.

∫ 1
0

xp+x−p
xq+x−q

dx
x =

π
2 qsec


2 q, |p|< q

17.

∫ 1

0

xp−^1 −x^1 −p
1 −x^2 dx=

π
2 cot


2 ,^0 < p <^2

18.

∫a

0

√ dx
a^2 −x^2

=π 2

19.

∫a

0


a^2 −x^2 dx=π 4 a^2

20.

∫∞

0

dx
x^2 +a^2 =

π
2 a
21.

∫∞

0

xα−^1
1 +xdx=

π
sinαπ,^0 < α <^1
22.

∫ 1
0

xα−^1 +x−α
1 +x dx=

π
sinαπ,^0 < α <^1

23.

∫∞
0

xmdx
1 +x^2 =

π
2 sec


2

24.

∫∞

0

xα−^1
1 −x^2 dx=

π
2 cot

απ
2

Appendix C
Free download pdf