Begin2.DVI

(Ben Green) #1




∫∞

0

dx
1 −xn=

π
ncot

π
n





∫∞
0

dx
(a^2 x^2 +c^2 )(x^2 +b^2 )=

π
2 bc

1
c+ab





∫∞
0

dx
(a^2 +x^2 )(b^2 +x^2 )=

π
2

1
ab(a+b)





∫∞

0

dx
(a^2 −x^2 )(x^2 +p^2 )=

π
2 p

1
a^2 +p^2





∫∞

0

x^2 dx
(a^2 −x^2 )(x^2 +p^2 )=

π
2

p
a^2 +p^2





∫∞
0

x^2 dx
(x^2 +a^2 )(x^2 +b^2 )(x^2 +c^2 )=

π
2(a+b)(b+c)(c+a)





∫∞

0

√x dx
1 +x^2 =

√π
2





∫∞

0

x dx
(1 +x)(1 +x^2 )=

π
4

Integrals containing trigonometric terms





∫ 1

0

sin−^1 x
x dx=

π
2 ln 2





∫π/ 2
0

tan−^1 (abtanθ)dθ
tanθ =

π
2 ln|1 +

b
a|





∫π/ 2
0

sin^2 x dx=π 4





∫π/ 2
0

cos^2 x dx=π 4





∫π/ 2

0

dx
a+bcosx=

cos√−^1 (b/a)
a^2 −b^2





∫π/ 2

0

sin^2 m−^1 xcos^2 n−^1 x dx=B(m, n) =Γ(Γ(mm)Γ(+nn)), m > 0 , n > 0





∫π/ 2
0

sinpxcosqx dx=Γ(

p+1
2 )Γ(

q+1
2 )
2Γ(p+ 2 q+ 1)





∫π/ 2
0

dx
1 + tanmx=

π
4





∫π
0

cospθcosqθ dθ=

{ 0 , p 6 =q
π
2 , p=q

Appendix C
Free download pdf