I6-12. (c) 23 / 9 (d) 23 / 3
I6-13. (a) ˆeC=ˆe^2 √+ ˆ 2 e^3 also−ˆeC (b)− 1 /
√
3
I6-14. (b)A~·ˆeα=−cosα+
√
3 sinα
(c)α=π/ 6 or 7 π/ 6
(d)y(α) =
√
3 sinα−cosαand
dy
dα= 0whenα=−π/^3 or^2 π/^3
y′′(α) =−
√
3 sinα+cosα,y′′(−π/3)> 0 andy′′(2π/3)< 0 , Maximum +2, Minimum
-2
I6-15.
A~(t) =A~ 0 +A~ 1 (t−t 0 ) +A~ 2 (t−t^0 )
2
2! +
A~ 3 (t−t^0 )
3
3! +···+
A~n(t−t^0 )
n
n! +···
A~′(t) =A~ 1 +A~ 2 (t−t 0 ) +···+A~n(t−t^0 )
n− 1
(n−1)! +···
A~′′(t) =A~ 2 +A~ 3 (t−t 0 ) +···+A~n(t−t^0 )
n− 2
(n−2)! +···
..
.
..
.
Evaluate the derivatives att=t 0 and show
A~(t 0 ) =A~ 0 , A~′(t 0 ) =A~ 1 , A~′′(t 0 ) =A~ 2 , ... , A~(n)(t 0 ) =A~n, ...
I6-16. (a)A~×B~=− 16 ˆe 1 + 8ˆe 3 (b) 16 ˆe 1 − 8 ˆe 3 (e)θ= cos−^1 (11/21)≈ 58. 41 ◦
I6-17.
D~ 1 =A~+B~= 3ˆe 1 + 11ˆe 2 + 4ˆe 3
D~ 2 =B~−A~=ˆe 1 + 7ˆe 2
Area=|A~×B~|= 15
I6-18.
cosα=
√
2 / 2
cosβ=1/ 2
cosγ=− 1 / 2
~e=~ρ
|~ρ|
= cosαˆe 1 + cosβˆe 2 + cosγˆe 3
cos^2 α+ cos^2 β+ cos^2 γ= 2/4 + 1/4 + 1/4 = 1
I6-19. IfA~×B~=~ 0 , thenA~is parallel toB~ orA~=cB~ for some constantc.
Solutions Chapter 6