I6-50. If dtd(B~×C~) =B~×d
C~
dt +
dB~
dt ×
C~, thend
dt[
A~×(B~×C~)]
=A~×d
dt(
B~×C~) +dA~
dt×(
B~×C~)=A~×[
B~×dC~
dt +dB~
dt ×
C~]
+dA~
dt×(
B~×C~)=A~×(B~×dC~
dt) +A~×(dB~
dt×C~) +dA~
dt×(B~×C~)I6-51. The curves~r=~r(r 0 ,θ) =r 0 cosθˆe 1 +r 0 sinθˆe 2 are coordinate curves which are
circles of radiusr 0. The curves~r=~r(r,θ 0 ) =rcosθ 0 eˆ 1 +rsinθ 0 ˆe 2 are coordinate curves
which are the raysθ=θ 0 =a constant∂~r
∂r= cosθ+ sinθˆe 2 =ˆer
∂~r
∂θ=−rsinθˆe 1 +rcosθˆe 2 =rˆeθI6-52.
∫CF~×d~r=∫(2,6)(1,3)ˆe 1 (y−x)dz−ˆe 2 xydz+ˆe 3 (xy dy−(y−x)dx)
On the liney= 3x,z= 0, dz= 0, dy= 3dx
so that∫CF~×d~r=∫ 21[x(3x) 3dx−(3x−x)dx]ˆe 3 = 18ˆe 3I6-53.
∫CF~·d~r=∫C[(xy+ 1)dx+ (x+z+ 1)dy+ (z+ 1)dz]
∫CF~·d~r=∫0 AF~·d~r+∫ABF~·d~r+∫BCF~·d~r=I 1 +I 2 +I 3
On 0A,y= 0,dy= 0,z= 0,dz= 0andI 1 =∫ 1
0 dx= 1
On AB,x= 1,dx= 0,z= 0,dz= 0andI 2 =∫ 102 dy= 2On BC,x= 1,dx= 0,y= 1,dy= 0andI 3 =∫ 10(z+ 1)dz= 3/ 2Therefore∫CF~·d~r= 9/ 2I6-55.
∫CF~·d~r=∫0 AF~·d~r+∫ABF~·d~r=I 1 +I 2On 0Ay=x,dy=dx,z= 0,dz= 0, 0 ≤x≤ 1 ,I 1 =∫ 10(x+ 2x^2 )dx= 7/ 6
On ABx= 1,y= 1,dx=dy= 0, 0 ≤z≤ 2 I 2 =∫ 2
0 dz= 2
Therefore,∫CF~·d~r= 19/ 6Solutions Chapter 6