I6-50. If dtd(B~×C~) =B~×d
C~
dt +
dB~
dt ×
C~, then
d
dt
[
A~×(B~×C~)
]
=A~×
d
dt(
B~×C~) +dA~
dt×(
B~×C~)
=A~×
[
B~×dC~
dt +
dB~
dt ×
C~
]
+
dA~
dt×(
B~×C~)
=A~×(B~×
dC~
dt
) +A~×(
dB~
dt
×C~) +
dA~
dt
×(B~×C~)
I6-51. The curves~r=~r(r 0 ,θ) =r 0 cosθˆe 1 +r 0 sinθˆe 2 are coordinate curves which are
circles of radiusr 0. The curves~r=~r(r,θ 0 ) =rcosθ 0 eˆ 1 +rsinθ 0 ˆe 2 are coordinate curves
which are the raysθ=θ 0 =a constant
∂~r
∂r
= cosθ+ sinθˆe 2 =ˆer
∂~r
∂θ
=−rsinθˆe 1 +rcosθˆe 2 =rˆeθ
I6-52.
∫
C
F~×d~r=
∫(2,6)
(1,3)
ˆe 1 (y−x)dz−ˆe 2 xydz+ˆe 3 (xy dy−(y−x)dx)
On the liney= 3x,z= 0, dz= 0, dy= 3dx
so that
∫
C
F~×d~r=
∫ 2
1
[x(3x) 3dx−(3x−x)dx]ˆe 3 = 18ˆe 3
I6-53.
∫
C
F~·d~r=
∫
C
[(xy+ 1)dx+ (x+z+ 1)dy+ (z+ 1)dz]
∫
C
F~·d~r=
∫
0 A
F~·d~r+
∫
AB
F~·d~r+
∫
BC
F~·d~r=I 1 +I 2 +I 3
On 0A,y= 0,dy= 0,z= 0,dz= 0andI 1 =
∫ 1
0 dx= 1
On AB,x= 1,dx= 0,z= 0,dz= 0andI 2 =
∫ 1
0
2 dy= 2
On BC,x= 1,dx= 0,y= 1,dy= 0andI 3 =
∫ 1
0
(z+ 1)dz= 3/ 2
Therefore
∫
C
F~·d~r= 9/ 2
I6-55.
∫
C
F~·d~r=
∫
0 A
F~·d~r+
∫
AB
F~·d~r=I 1 +I 2
On 0Ay=x,dy=dx,z= 0,dz= 0, 0 ≤x≤ 1 ,I 1 =
∫ 1
0
(x+ 2x^2 )dx= 7/ 6
On ABx= 1,y= 1,dx=dy= 0, 0 ≤z≤ 2 I 2 =
∫ 2
0 dz= 2
Therefore,
∫
C
F~·d~r= 19/ 6
Solutions Chapter 6