Begin2.DVI

(Ben Green) #1

I6-50. If dtd(B~×C~) =B~×d
C~
dt +


dB~
dt ×
C~, then

d
dt

[
A~×(B~×C~)

]
=A~×

d
dt(
B~×C~) +dA~
dt×(
B~×C~)

=A~×

[
B~×dC~
dt +

dB~
dt ×
C~

]
+

dA~
dt×(
B~×C~)

=A~×(B~×

dC~
dt

) +A~×(

dB~
dt

×C~) +

dA~
dt

×(B~×C~)

I6-51. The curves~r=~r(r 0 ,θ) =r 0 cosθˆe 1 +r 0 sinθˆe 2 are coordinate curves which are


circles of radiusr 0. The curves~r=~r(r,θ 0 ) =rcosθ 0 eˆ 1 +rsinθ 0 ˆe 2 are coordinate curves
which are the raysθ=θ 0 =a constant

∂~r
∂r

= cosθ+ sinθˆe 2 =ˆer
∂~r
∂θ

=−rsinθˆe 1 +rcosθˆe 2 =rˆeθ

I6-52.



C

F~×d~r=

∫(2,6)

(1,3)

ˆe 1 (y−x)dz−ˆe 2 xydz+ˆe 3 (xy dy−(y−x)dx)
On the liney= 3x,z= 0, dz= 0, dy= 3dx
so that


C

F~×d~r=

∫ 2

1

[x(3x) 3dx−(3x−x)dx]ˆe 3 = 18ˆe 3

I6-53.



C

F~·d~r=


C

[(xy+ 1)dx+ (x+z+ 1)dy+ (z+ 1)dz]

C

F~·d~r=


0 A

F~·d~r+


AB

F~·d~r+


BC

F~·d~r=I 1 +I 2 +I 3
On 0A,y= 0,dy= 0,z= 0,dz= 0andI 1 =

∫ 1
0 dx= 1
On AB,x= 1,dx= 0,z= 0,dz= 0andI 2 =

∫ 1

0

2 dy= 2

On BC,x= 1,dx= 0,y= 1,dy= 0andI 3 =

∫ 1

0

(z+ 1)dz= 3/ 2

Therefore


C

F~·d~r= 9/ 2

I6-55.



C

F~·d~r=


0 A

F~·d~r+


AB

F~·d~r=I 1 +I 2

On 0Ay=x,dy=dx,z= 0,dz= 0, 0 ≤x≤ 1 ,I 1 =

∫ 1

0

(x+ 2x^2 )dx= 7/ 6
On ABx= 1,y= 1,dx=dy= 0, 0 ≤z≤ 2 I 2 =

∫ 2
0 dz= 2
Therefore,


C

F~·d~r= 19/ 6

Solutions Chapter 6
Free download pdf