I7-10.
d~r
ds
ds
dt=
d~r
dt=~r
′ or ˆetds
dt=~r
′, |~r′|=ds
dt
d
dt
(
ˆetds
dt
)
=d
(^2) ~r
dt^2
=~r′′
ˆetd
(^2) s
dt^2
+ds
dt
dˆet
ds
ds
dt
=~r′′
ˆetd
(^2) s
dt^2
(ds
dt
)^2 κˆen=~r′′
~r′×~r′′=ˆet
ds
dt×(
ˆetd
(^2) s
dt^2 + (
ds
dt)
(^2) κˆen) = (ds
dt)
(^3) κˆeb=|~r′| (^3) κˆeb
|~r′×~r′′|=κ|~r′|^3
I7-11. (i)
dφ
ds
=gradφ·eˆ
(1, 1 ,1)
=[(2xy^2 z)ˆe 1 + 2yx^2 zˆe 2 + (x^2 y^2 +x^3 )ˆe 3 ]·
(
3 ˆe 1 − 2 ˆe 2 + 6ˆe 3
7
)
(1, 1 ,1)
23
7
I7-12.
(i) gradφ=2xyˆe 1 +x^2 ˆe 2
dφ
ds=gradφ·
ˆeα= (2xyeˆ 1 +x^2 ˆe 2 )·(cosαˆe 1 + sinαˆe 2 )
(2,√3)
dφ
ds
=4
√
3 cosα+ 4 sinα=f(α)
(ii) df
dα
=− 4
√
3 sinα+ 4 cosα= 0, =⇒ tanα=√^1
3
, =⇒ α=π/ 6 , 7 π/ 6
f′′(α) =− 4
√
3 cosα−4 sinα
f′′(π/6)< 0 maximum atπ/ 6
f′′(7π/6)> 0 minimum at 7 π/ 6
I7-13. Show derivative equals
~r·(~r′×~r′′′) +~r·(~r′′×~r′′) +~r′·(~r′×~r′′)
where last two terms are zero. Use triple scalar product relation on last term.
Solutions Chapter 7