Begin2.DVI

(Ben Green) #1

I7-10.


d~r
ds

ds
dt=

d~r
dt=~r

′ or ˆetds
dt=~r

′, |~r′|=ds
dt
d
dt

(
ˆetds
dt

)
=d

(^2) ~r
dt^2
=~r′′
ˆetd
(^2) s
dt^2
+ds
dt
dˆet
ds
ds
dt
=~r′′
ˆetd
(^2) s
dt^2




  • (ds
    dt
    )^2 κˆen=~r′′
    ~r′×~r′′=ˆet
    ds
    dt×(
    ˆetd
    (^2) s
    dt^2 + (
    ds
    dt)
    (^2) κˆen) = (ds
    dt)
    (^3) κˆeb=|~r′| (^3) κˆeb
    |~r′×~r′′|=κ|~r′|^3
    I7-11. (i)

    ds
    =gradφ·eˆ
    (1, 1 ,1)
    =[(2xy^2 z)ˆe 1 + 2yx^2 zˆe 2 + (x^2 y^2 +x^3 )ˆe 3 ]·
    (
    3 ˆe 1 − 2 ˆe 2 + 6ˆe 3
    7
    )
    (1, 1 ,1)


    23
    7
    I7-12.
    (i) gradφ=2xyˆe 1 +x^2 ˆe 2

    ds=gradφ·
    ˆeα= (2xyeˆ 1 +x^2 ˆe 2 )·(cosαˆe 1 + sinαˆe 2 )
    (2,√3)

    ds
    =4

    3 cosα+ 4 sinα=f(α)
    (ii) df

    =− 4

    3 sinα+ 4 cosα= 0, =⇒ tanα=√^1
    3
    , =⇒ α=π/ 6 , 7 π/ 6
    f′′(α) =− 4

    3 cosα−4 sinα
    f′′(π/6)< 0 maximum atπ/ 6
    f′′(7π/6)> 0 minimum at 7 π/ 6
    I7-13. Show derivative equals
    ~r·(~r′×~r′′′) +~r·(~r′′×~r′′) +~r′·(~r′×~r′′)
    where last two terms are zero. Use triple scalar product relation on last term.
    Solutions Chapter 7



Free download pdf