I7-17. Vector equation of plane is(~r−~r 0 )·N~= 0where~r=xeˆ 1 +yˆe 2 +zeˆ 3 is variable
point in plane,~r 0 is fixed point in plane andN~ is normal to plane. Note that
d~r
ds=
ˆetis normal to normal plane
d~r
ds×
d^2 ~r
ds^2 =ˆet×κˆen=κˆebis normal to osculating plane
d^2 ~r
ds^2
=κˆenis normal to rectifying plane
I7-18. If~r(u,v) =x(u,v)ˆe 1 +y(u,v)ˆe 2 +z(u,v)ˆe 3 , then
∂~r
∂u
=∂x
∂u
eˆ 1 +∂y
∂u
ˆe 2 +∂z
∂u
ˆe 3 is tangent to coordinate curve~r(u,v 0 )
∂~r
∂v
=∂x
∂v
ˆe 1 +∂y
∂v
ˆe 2 +∂z
∂v
eˆ 3 is tangent to coordinate curve~r(u 0 ,v)
N~=∂~r
∂u
×∂~r
∂v
is normal to surface and
ˆen=
N~
|N~|
=` 1 ˆe 1 +` 2 ˆe 2 +` 3 eˆ 3 is unit normal to surface where
|N~|=
√
(∂~r
∂u
×∂~r
∂v
)·(∂~r
∂u
×∂~r
∂v
) =
√
EG−F^2
I7-19. N~= gradF=
∂F
∂x
ˆe 1 +
∂F
∂y
ˆe 2 +
∂F
∂z
ˆe 3 and ˆen=|NN~~|where|N~|=H
I7-20. If surface is~r=~r(x,y) =xˆe 1 +yˆe 2 +z(x,y)ˆe 3 , then
∂~r
∂x=
ˆe 1 +∂z
∂x
ˆe 3 ∂~r
∂y=
ˆe 2 +∂z
∂y
ˆe 3
andN~ =
∂~r
∂x×
∂~r
∂y=−
∂z
∂x
ˆe 1 −∂z
∂y
ˆe 2 +ˆe 3 with ˆen=
N~
|N~|
and|N~|=
√
1 + (∂x∂z)^2 + (∂z∂y)^2
I7-21. ˆen=xˆe 1 +yˆe 2 or ˆen= cosθeˆ 1 + sinθˆe 2
I7-22. ˆen=xˆe 1 +yˆe 2 +zˆe 3 or ˆen= sinθcosφˆe 1 + sinθsinφˆe 2 + cosθˆe 3
I7-23. φ=ax+by+cz−d= 0andN~ = gradφ=aˆe 1 +bˆe 2 +cˆe 3 so that
ˆen=a
ˆe 1 +bˆe 2 +cˆe 3
√
a^2 +b^2 +c^2
I7-24.^12 ˆe 1 +π 8 ˆe 2
I7-25.^1
15
ˆe 1 +^1
15
ˆe 2 +^1
15
ˆe 3
Solutions Chapter 7