Begin2.DVI

(Ben Green) #1

I7-17. Vector equation of plane is(~r−~r 0 )·N~= 0where~r=xeˆ 1 +yˆe 2 +zeˆ 3 is variable


point in plane,~r 0 is fixed point in plane andN~ is normal to plane. Note that

d~r
ds=

ˆetis normal to normal plane
d~r
ds×

d^2 ~r
ds^2 =ˆet×κˆen=κˆebis normal to osculating plane
d^2 ~r
ds^2

=κˆenis normal to rectifying plane

I7-18. If~r(u,v) =x(u,v)ˆe 1 +y(u,v)ˆe 2 +z(u,v)ˆe 3 , then


∂~r
∂u

=∂x
∂u

eˆ 1 +∂y
∂u

ˆe 2 +∂z
∂u

ˆe 3 is tangent to coordinate curve~r(u,v 0 )
∂~r
∂v

=∂x
∂v

ˆe 1 +∂y
∂v

ˆe 2 +∂z
∂v

eˆ 3 is tangent to coordinate curve~r(u 0 ,v)

N~=∂~r
∂u

×∂~r
∂v

is normal to surface and

ˆen=
N~
|N~|

=` 1 ˆe 1 +` 2 ˆe 2 +` 3 eˆ 3 is unit normal to surface where

|N~|=


(∂~r
∂u

×∂~r
∂v

)·(∂~r
∂u

×∂~r
∂v

) =


EG−F^2

I7-19. N~= gradF=


∂F
∂x

ˆe 1 +

∂F
∂y

ˆe 2 +

∂F
∂z

ˆe 3 and ˆen=|NN~~|where|N~|=H

I7-20. If surface is~r=~r(x,y) =xˆe 1 +yˆe 2 +z(x,y)ˆe 3 , then


∂~r
∂x=

ˆe 1 +∂z
∂x

ˆe 3 ∂~r
∂y=

ˆe 2 +∂z
∂y

ˆe 3

andN~ =

∂~r
∂x×

∂~r
∂y=−

∂z
∂x

ˆe 1 −∂z
∂y

ˆe 2 +ˆe 3 with ˆen=
N~
|N~|

and|N~|=


1 + (∂x∂z)^2 + (∂z∂y)^2

I7-21. ˆen=xˆe 1 +yˆe 2 or ˆen= cosθeˆ 1 + sinθˆe 2


I7-22. ˆen=xˆe 1 +yˆe 2 +zˆe 3 or ˆen= sinθcosφˆe 1 + sinθsinφˆe 2 + cosθˆe 3


I7-23. φ=ax+by+cz−d= 0andN~ = gradφ=aˆe 1 +bˆe 2 +cˆe 3 so that


ˆen=a

ˆe 1 +bˆe 2 +cˆe 3

a^2 +b^2 +c^2

I7-24.^12 ˆe 1 +π 8 ˆe 2


I7-25.^1
15


ˆe 1 +^1
15

ˆe 2 +^1
15

ˆe 3

Solutions Chapter 7
Free download pdf