I7-41.
F=ω+λ 1 g+λ 2 h=x^2 +y^2 +z^2 +λ 1 g+λ 2 h
∂F
∂λ 1
=g=x+y+z−6 = 0
∂F
∂λ 2 =h= 3x+ 5y+ 7z−34 = 0
∂F
∂x
=2x+λ 1 + 3λ 2 = 0
∂F
∂y
=2y+λ 1 + 5λ 2 = 0
∂F
∂z
=2z+λ 1 + 7λ 2 = 0
Solve this system of equations and show
x= 1, y= 2, z= 3, λ 1 = 1, λ 2 =− 1
I7-42.
∇F=− 2 zˆe 2 + (3y−1)ˆe 3 and eˆn=xˆe 1 +yˆe 2 +zˆe 3 , withdS=
dxdy
|ˆen·ˆe 3 |=
dxdy
z
I=
∫ 1
1
∫+√ 1 −x 2
−√ 1 −x^2
(y−1)dydx=−π
Problem can also be solved using spherical coordinatesx= sinθcosφ, y= sinθsinφ, z=
cosθ
I7-44. (b)∂x∂~r=ˆe 1 +∂x∂yˆe 2 , ∂~r∂z=∂y∂zˆe 2 +ˆe 3 giving
E=
∂~r
∂x·
∂~r
∂x= 1 + (
∂y
∂x)
2
F=
∂~r
∂x·
∂~r
∂z=
∂y
∂x
∂y
∂z
G=∂~r∂z·∂~r∂z= (∂y∂z)^2 + 1
Show
dS=
√
EG−F^2 =
√
1 + (∂y
∂x
)^2 + (∂y
∂z
)^2
Normal to surface isN~ =
∂~r
∂z×
∂~r
∂x=−
∂y
∂x
ˆe 1 +ˆe 2 −∂y
∂z
ˆe 3 Note that if you use ∂~r∂x×∂~r∂z
you get−N~
The vector element of area isdS~=ˆendS= (−
∂y
∂x
ˆe 1 +eˆ 2 −∂y
∂z
ˆe 3 )dxdzTake the dot
product of both sides of this equation with ˆe 2 and show
|ˆen·ˆe 2 |dS=dxdz, or dS=
dxdz
|ˆen·ˆe 2 |
Here the absolute value sign is used to insure that the element of surface areadSis
positive.
Solutions Chapter 7