I7-41.
F=ω+λ 1 g+λ 2 h=x^2 +y^2 +z^2 +λ 1 g+λ 2 h
∂F
∂λ 1
=g=x+y+z−6 = 0
∂F
∂λ 2 =h= 3x+ 5y+ 7z−34 = 0
∂F
∂x=2x+λ 1 + 3λ 2 = 0
∂F
∂y=2y+λ 1 + 5λ 2 = 0
∂F
∂z=2z+λ 1 + 7λ 2 = 0
Solve this system of equations and showx= 1, y= 2, z= 3, λ 1 = 1, λ 2 =− 1I7-42.
∇F=− 2 zˆe 2 + (3y−1)ˆe 3 and eˆn=xˆe 1 +yˆe 2 +zˆe 3 , withdS=dxdy
|ˆen·ˆe 3 |=dxdy
zI=∫ 11∫+√ 1 −x 2−√ 1 −x^2(y−1)dydx=−πProblem can also be solved using spherical coordinatesx= sinθcosφ, y= sinθsinφ, z=
cosθI7-44. (b)∂x∂~r=ˆe 1 +∂x∂yˆe 2 , ∂~r∂z=∂y∂zˆe 2 +ˆe 3 giving
E=∂~r
∂x·∂~r
∂x= 1 + (∂y
∂x)2F=∂~r
∂x·∂~r
∂z=∂y
∂x∂y
∂z
G=∂~r∂z·∂~r∂z= (∂y∂z)^2 + 1Show
dS=√
EG−F^2 =√
1 + (∂y
∂x)^2 + (∂y
∂z)^2Normal to surface isN~ =∂~r
∂z×∂~r
∂x=−∂y
∂xˆe 1 +ˆe 2 −∂y
∂zˆe 3 Note that if you use ∂~r∂x×∂~r∂z
you get−N~
The vector element of area isdS~=ˆendS= (−∂y
∂xˆe 1 +eˆ 2 −∂y
∂zˆe 3 )dxdzTake the dot
product of both sides of this equation with ˆe 2 and show|ˆen·ˆe 2 |dS=dxdz, or dS=dxdz
|ˆen·ˆe 2 |
Here the absolute value sign is used to insure that the element of surface areadSis
positive.Solutions Chapter 7