I7-45. ~rc=
∑n
j=1
mj~rj
∑n
j=1
mj
Note that this is a weighted sum of the vectors~ri where the
weight factors arem 1 ,m 2 ,...,mn.
I7-46. We have verified the triple scalar productA~·(B~×C~) =B~·(C~×A~) =C~·(A~×B~)
Change symbols and writeX~·(C~×D~) =D~·(X~×C~)SubstituteX~ =A~×B~ to show
(A~×B~)·(C~×D~) =D~
{
(A~×B~)×C~
}
Next one can employ the triple vector product
relation
(A~×B~)×C~=B~(A~·C~)−A~(B~·C~)
to obtain
(A~×B~)·(C~×D~) = (A~·C~)(B~·D~)−(A~·D~)(B~·C~)
I7-48. (a) At extremum value forE(α,β) =
∑N
i=1
(αxi−β−yi)^2 require that
∂E
∂α
=
∑N
i=1
2(αxi−β−yi)xi= 0
∂E
∂β
=
∑N
i=1
2(αxi−β−yi)(−1) = 0
The above equations can be expressed in the form
α
∑N
i=1
x^2 i−β
∑n
i=1
xi=
∑N
i=1
xiyi
α
∑N
i=1
xi−β
∑N
i=1
1 =
∑N
i=1
yi where
∑N
i=1
1 =N
Solve this system of equations to obtain desired result.
(b) y= 7 + 2x
Solutions Chapter 7