I7-45. ~rc=
∑nj=1mj~rj∑nj=1mjNote that this is a weighted sum of the vectors~ri where theweight factors arem 1 ,m 2 ,...,mn.I7-46. We have verified the triple scalar productA~·(B~×C~) =B~·(C~×A~) =C~·(A~×B~)
Change symbols and writeX~·(C~×D~) =D~·(X~×C~)SubstituteX~ =A~×B~ to show
(A~×B~)·(C~×D~) =D~{
(A~×B~)×C~}
Next one can employ the triple vector product
relation
(A~×B~)×C~=B~(A~·C~)−A~(B~·C~)to obtain
(A~×B~)·(C~×D~) = (A~·C~)(B~·D~)−(A~·D~)(B~·C~)I7-48. (a) At extremum value forE(α,β) =
∑Ni=1(αxi−β−yi)^2 require that∂E
∂α=∑Ni=12(αxi−β−yi)xi= 0∂E
∂β=∑Ni=12(αxi−β−yi)(−1) = 0The above equations can be expressed in the formα∑Ni=1x^2 i−β∑ni=1xi=∑Ni=1xiyiα∑Ni=1xi−β∑Ni=11 =∑Ni=1yi where∑Ni=11 =NSolve this system of equations to obtain desired result.
(b) y= 7 + 2xSolutions Chapter 7