Chapter 8I8-1.
I8-2. (i) gradφ= 4ˆe 1 − 3 ˆe 2
(iii)gradφ= 2xˆe 1 + 2yˆe 2 (ii)I8-3. (iii)z=x^2 +y^2 paraboloid N~ =− 2 xˆe 1 − 2 yˆe 2 +ˆe 3
3 , 4 , 25
=− 6 ˆe 1 − 8 ˆe 2 +ˆe 3(iv) z−xy= 0 hyperbolic paraboloidN~=−yˆe 1 −xˆe 2 +ˆe 3
2 , 3 , 6=− 3 ˆe 1 − 2 ˆe 2 +ˆe 3I8-4. ∂z
∂x
=y= 0and∂z∂y=x= 0simultaneously at the origin.I8-5. Normal to sphereN~ 1 = 2xˆe 1 + 2yˆe 2 + 2zˆe 3 and normal to plane is
N~ 2 =ˆe 1 +ˆe 2 +ˆe 3
At the point(3, 2 ,6)one findsN~ 1 = 6ˆe 1 + 4ˆe 2 + 12ˆe 3 andN~ 2 =eˆ 1 +eˆ 2 +ˆe 3
A tangent vector to the curve of intersection isT~=N~ 1 ×N~ 2 =∣∣
∣∣
∣∣ˆe 1 ˆe 2 ˆe 3
6 4 12
1 1 1∣∣
∣∣
∣∣=−^8 ˆe^1 + 6ˆe^2 + 2ˆe^3 or −T~Solutions Chapter 8