I8-6. (i)r=
√
x^2 +y^2 +z^2 and
∇rn=
∂rn
∂x
eˆ 1 +∂r
n
∂y
ˆe 2 +∂r
n
∂z
ˆe 3
=nrn−^1
[
∂r
∂x
ˆe 1 +∂r
∂y
ˆe 2 +∂r
∂z
eˆ 3
]
=nrn−^1
[x
r
ˆe 1 +y
r
eˆ 2 +z
r
ˆe 3
]
=nrn−^2 ~r
(iii)
∇f(r) =∂f
∂r
∂r
∂x
ˆe 1 +∂f
∂r
∂r
∂y
ˆe 2 +∂f
∂r
∂r
∂z
ˆe 3
=f′(t)
[x
r
ˆe 1 +y
r
ˆe 2 +z
r
ˆe 3
]
=f′(r)~r
|~r|
=f′(r)~r
r
I8-7. Let~r 1 (τ) = (τ−1)ˆe 1 + (16−τ)ˆe 2 + (2τ−2)ˆe 3 and~r 2 (t) =−tˆe 1 + 2tˆe 2 + 3tˆe 3 and
define vector from line 1 to line 2 as~r 2 −~r 1. Minimize the distance squared
f(t,τ) =|~r 2 −~r 1 |^2 = (−t−τ+ 1)^2 + (2t+τ−16)^2 + (3t− 2 τ+ 2)^2
by examining the critical points where∂f
∂τ
= 0and∂f
∂t
= 0and show minimum occurs
wheret= 3andτ= 5giving minimum distance
√
75
I8-8. Method I: Normal to plane isN~=ˆe 1 +ˆe 2 +ˆe 3 and unit normal to plane is
ˆeN=eˆ^1 + ˆ√e^23 + ˆe^3. Consider vector~r 1 =eˆ 1 projected ontoˆeN to obtain distance√^13
Method II:f=d^2 =x^2 +y^2 +z^2 is distance from origin to(x,y,z)squared. Here
z= 1−x−yso thatf=d^2 =x^2 +y^2 + (1−x−y)^2 Showf has critical points atx= 1/ 3
,y= 1/ 3 andz= 1/ 3 givingd^2 = 1/ 3 ord=√^13
I8-9. (iii) dφ
dn
= [(3x^2 y+y^2 )ˆe 1 + (x^3 + 2xy)ˆe 2 ]·eˆnwhere
on bottom of square ˆen=−ˆe 2 , y= 0 =⇒ dφ
dn
=−x^3
on right side of square ˆen=eˆ 1 , x= 1 =⇒ dφ
dn
= 3y+y^2
on top of square ˆen=ˆe 2 , y= 1 =⇒ dφ
dn
=x^3 + 2x
on left side of square ˆen=−ˆe 2 , x= 0 =⇒ dφ
dn
= 0
I8-10. (ii)z= (x−2)^2 −(y−3)^2 has critical points atx= 2andy= 3. HereA=∂
(^2) z
∂x^2 = 2,
C=∂∂y^2 z 2 =− 2 andB=∂x ∂y∂^2 z = 0givesAC−B^2 =− 4 < 0 so there is a saddle point at
the critical value.
Solutions Chapter 8