I8-52. IfA~=αE~ 1 +βE~ 2 +γE~ 3 andE~ 1 ·E~ 2 = 0,E~ 1 ·E~ 3 = 0,E~ 2 ·E~ 3 = 0, then show
A~·E~ 1 =αE~ 1 ·E~ 1 or α= A~·E~^1
E~ 1 ·E~ 1A~·E~ 2 =βE~ 2 ·E~ 2 or β=
A~·E~ 2
E~ 2 ·E~ 2A~·E~ 3 =γE~ 3 ·E~ 3 or γ=A~·E~ 3
E~ 3 ·E~ 3I8-53. IfE~^1 had the same direction asE~ 2 ×E~ 3 , thenE~^1 =αE~ 2 ×E~ 3. IfE~^1 ·E~ 1 = 1,
then1 =αE~ 1 ·(E~ 2 ×E~ 3 )orα=^1
VforV =E~ 1 ·(E~ 2 ×E~ 3 )
Do the same type of arguments forE~^2 andE~^3.
Reverse the roles ofE~ 1 ,E~ 2 ,E~ 3 withE~^1 ,E~^2 ,E~^3 to showE~^1 ·(E~^2 ×E~^3 ) =^1
V(E~ 2 ×E~ 3 )·[
1
V(E~ 3 ×E~ 1 )×^1
V(E~ 1 ×E~ 2 )]then use the triple scalar product relation to showE~^1 ·(E~^2 ×E~^3 ) =^1
V^3 (
E~ 1 ×E~ 2 )[
(E~ 2 ×E~ 3 )×(E~ 3 ×E~ 1 )]Use another vector identity to showE~^1 ·(E~^2 ×E~^3 ) =^1
V^3[E~ 1 ·(E~ 2 ×E~ 3 )]^2 =^1
V^3V^2 =^1
VSolutions Chapter 8