I8-52. IfA~=αE~ 1 +βE~ 2 +γE~ 3 andE~ 1 ·E~ 2 = 0,E~ 1 ·E~ 3 = 0,E~ 2 ·E~ 3 = 0, then show
A~·E~ 1 =αE~ 1 ·E~ 1 or α= A~·E~^1
E~ 1 ·E~ 1
A~·E~ 2 =βE~ 2 ·E~ 2 or β=
A~·E~ 2
E~ 2 ·E~ 2
A~·E~ 3 =γE~ 3 ·E~ 3 or γ=
A~·E~ 3
E~ 3 ·E~ 3
I8-53. IfE~^1 had the same direction asE~ 2 ×E~ 3 , thenE~^1 =αE~ 2 ×E~ 3. IfE~^1 ·E~ 1 = 1,
then1 =αE~ 1 ·(E~ 2 ×E~ 3 )orα=^1
V
forV =E~ 1 ·(E~ 2 ×E~ 3 )
Do the same type of arguments forE~^2 andE~^3.
Reverse the roles ofE~ 1 ,E~ 2 ,E~ 3 withE~^1 ,E~^2 ,E~^3 to show
E~^1 ·(E~^2 ×E~^3 ) =^1
V
(E~ 2 ×E~ 3 )·
[
1
V
(E~ 3 ×E~ 1 )×^1
V
(E~ 1 ×E~ 2 )
]
then use the triple scalar product relation to show
E~^1 ·(E~^2 ×E~^3 ) =^1
V^3 (
E~ 1 ×E~ 2 )
[
(E~ 2 ×E~ 3 )×(E~ 3 ×E~ 1 )
]
Use another vector identity to show
E~^1 ·(E~^2 ×E~^3 ) =^1
V^3
[E~ 1 ·(E~ 2 ×E~ 3 )]^2 =^1
V^3
V^2 =^1
V
Solutions Chapter 8