I9-9. Integrate the equations ∂φ∂x=x 2 −+kyy 2 and∂φ∂y=x 2 kx+y 2 to obtain
φ=−ktan−^1
(
x
y
)
+C 1 and φ=ktan−^1
(y
x
)
+C 2
Show thattan−^1 h+ tan−^1 (^1
h
) =π
2
forh > 0 and then letc 1 =π 2 k, c 2 = 0to obtain the
potential
φ=k
[
π
2 −tan
− 1
(
x
y
)]
=ktan−^1
(y
x
)
Streamlines are circlesψ=x^2 +y^2 =c
I9-10.
(d) 2 xy x^2 −y^2
(e)x^2 +y^22 xy
I9-11. Show that
∂φ
∂x=
∂ψ
∂y =⇒
(
∂φ
∂r−
1
r
∂ψ
∂θ
)
cosθ=
(
∂ψ
∂r+
1
r
∂φ
∂θ
)
sinθ
and
∂φ
∂y=−
∂ψ
∂x =⇒
(
∂φ
∂r−
1
r
∂ψ
∂θ
)
sinθ=−
(
∂ψ
∂r+
1
r
∂ψ
∂θ
)
cosθ
If the above equations are to hold for all values ofθ, then the coefficient of thesinθ
andcosθterms must equal zero.
I9-12.
On upper semi-circle
∫
C 1 F~·d~r=−π/^4
On the lower semi-circle
∫
C 2 F~·d~r=π/^4
Solutions Chapter 9