Begin2.DVI

(Ben Green) #1

I9-9. Integrate the equations ∂φ∂x=x 2 −+kyy 2 and∂φ∂y=x 2 kx+y 2 to obtain


φ=−ktan−^1

(
x
y

)
+C 1 and φ=ktan−^1

(y
x

)
+C 2

Show thattan−^1 h+ tan−^1 (^1
h

) =π
2

forh > 0 and then letc 1 =π 2 k, c 2 = 0to obtain the
potential
φ=k

[
π
2 −tan

− 1

(
x
y

)]
=ktan−^1

(y
x

)

Streamlines are circlesψ=x^2 +y^2 =c

I9-10.


(d) 2 xy x^2 −y^2

(e)x^2 +y^22 xy

I9-11. Show that


∂φ
∂x=

∂ψ
∂y =⇒

(
∂φ
∂r−

1
r

∂ψ
∂θ

)
cosθ=

(
∂ψ
∂r+

1
r

∂φ
∂θ

)
sinθ

and
∂φ
∂y=−

∂ψ
∂x =⇒

(
∂φ
∂r−

1
r

∂ψ
∂θ

)
sinθ=−

(
∂ψ
∂r+

1
r

∂ψ
∂θ

)
cosθ

If the above equations are to hold for all values ofθ, then the coefficient of thesinθ
andcosθterms must equal zero.

I9-12.


On upper semi-circle


C 1 F~·d~r=−π/^4
On the lower semi-circle


C 2 F~·d~r=π/^4

Solutions Chapter 9
Free download pdf