I9-9. Integrate the equations ∂φ∂x=x 2 −+kyy 2 and∂φ∂y=x 2 kx+y 2 to obtain
φ=−ktan−^1(
x
y)
+C 1 and φ=ktan−^1(y
x)
+C 2Show thattan−^1 h+ tan−^1 (^1
h) =π
2forh > 0 and then letc 1 =π 2 k, c 2 = 0to obtain the
potential
φ=k[
π
2 −tan− 1(
x
y)]
=ktan−^1(y
x)Streamlines are circlesψ=x^2 +y^2 =cI9-10.
(d) 2 xy x^2 −y^2(e)x^2 +y^22 xyI9-11. Show that
∂φ
∂x=∂ψ
∂y =⇒(
∂φ
∂r−1
r∂ψ
∂θ)
cosθ=(
∂ψ
∂r+1
r∂φ
∂θ)
sinθand
∂φ
∂y=−∂ψ
∂x =⇒(
∂φ
∂r−1
r∂ψ
∂θ)
sinθ=−(
∂ψ
∂r+1
r∂ψ
∂θ)
cosθIf the above equations are to hold for all values ofθ, then the coefficient of thesinθ
andcosθterms must equal zero.I9-12.
On upper semi-circle∫
C 1 F~·d~r=−π/^4
On the lower semi-circle∫
C 2 F~·d~r=π/^4Solutions Chapter 9