I9-13. (b)~V = [−(x−y)z−yz 0 +x 0 z 0 ]ˆe 2
I9-14. φ=−mgz, W=
∫h 2
h 1
F~·d~r=
∫h 2
h 1
−mgdz=−mg(h 2 −h 1 ) =φ(h 2 )−φ(h 1 )
I9-16. Ifφ=x^2 −y^2 , thengradφ=F~= 2xˆe 1 − 2 yˆe 2 with field linesxy=c
I9-18. Show
φ=y^2 sinx+xz^3 +f 1 (y,z)
φ=y^2 sinx− 4 y+f 2 (x,z)
φ=zx^3 +f 3 (x,y)
Selectf 1 ,f 2 ,f 3 such that all three integrations are the same to obtainφ=y^2 sinx+
xz^3 − 4 y
I9-19. φ=x^2 yz+xy
I9-20. π(2−
√
3)
I9-21. 3 V
I9-22. Use the results∇·(φC~) =∇φ·C~=C~·∇φ and φC~·ˆen=C~·(φˆen)to show
C~·
∫∫∫
V
∇φdV−
∫∫
S
φˆendS
= 0
and sinceC~ is arbitrary the term in the brackets must equal zero.
I9-23. (a)F~=∇φso thatdivF~==∇·(∇φ) =∇^2 φ= 0
(b) Use the Gauss divergence theorem to show
∫∫∫
VdivF dV~ = 0 =
∫∫
S∇φ·ˆendS=
∫∫
S
∂φ
∂ndS
Solutions Chapter 9