I11-19. (i)
∑n
x=0x^2 f(x) =∑nx=0[x(x−1) +x]f(x)=∑nx=0x(x−1)f(x) +∑nx=0xf(x)=∑nx=0x(x−1)f(x) +npUsex(x−1)(
n
x)
=x(x−1)n(n−1)(n−2)!
x(x−1)(x−2)!(n−x)!=n(n−1)(
n− 1
x− 2)
and write∑nx=0x^2 f(x) =∑nx=2n(n−1)(
n− 2
x− 2)
pxqn−x+np=n(n−1)p^2∑nx=2(
n− 2
x− 2)
px−^2 qn−x+npNote that by shifting the summation indexn∑− 2X=0(
n− 2
X)
pXqn−^2 −X=n∑− 2X=0(
n− 2
n− 2 −X)
pXqn−^2 −X= (p+q)n−^2 = 1so that∑nx=0x^2 f(x) =n(n−1)p^2 +npσ^2 =∑nx=0(x−μ)^2 f(x) =∑nx=0(x^2 − 2 xμ+μ^2 )f(x)=∑nx=0x^2 f(x)− 2 μ∑nx=0xf(x) +μ^2∑nx=0f(x)=∑nx=0x^2 f(x)−μ^2 =E[(x^2 )]−(E[x])^2=n(n−1)p^2 +np−n^2 p^2
=np(1−p) =npqI11-21. (a)f(x) =
( 3
x)( 9
5 −x)
( 12
5)∑ 5
x=1f(x) = 1f(x) = 7/ 44 , f(1) = 21/ 44 , f(2) = 7/ 22 , f(3) = 1/ 12 , f(4) =f(5) = 0(b) The probability thatn= 6items are selected with zero nondefectives isf(x) =( 3
x)( 9
6 −x)
( 12
6) evaluated atx= 0orf(0) = 1/ 11. The probability that 6 items areselected and there is 1 defective isf(1) = 9/ 22. We are not interested inf(x)for xSolutions Chapter 11