I11-19. (i)
∑n
x=0
x^2 f(x) =
∑n
x=0
[x(x−1) +x]f(x)
=
∑n
x=0
x(x−1)f(x) +
∑n
x=0
xf(x)
=
∑n
x=0
x(x−1)f(x) +np
Usex(x−1)
(
n
x
)
=x(x−1)
n(n−1)(n−2)!
x(x−1)(x−2)!(n−x)!=n(n−1)
(
n− 1
x− 2
)
and write
∑n
x=0
x^2 f(x) =
∑n
x=2
n(n−1)
(
n− 2
x− 2
)
pxqn−x+np=n(n−1)p^2
∑n
x=2
(
n− 2
x− 2
)
px−^2 qn−x+np
Note that by shifting the summation index
n∑− 2
X=0
(
n− 2
X
)
pXqn−^2 −X=
n∑− 2
X=0
(
n− 2
n− 2 −X
)
pXqn−^2 −X= (p+q)n−^2 = 1
so that
∑n
x=0
x^2 f(x) =n(n−1)p^2 +np
σ^2 =
∑n
x=0
(x−μ)^2 f(x) =
∑n
x=0
(x^2 − 2 xμ+μ^2 )f(x)
=
∑n
x=0
x^2 f(x)− 2 μ
∑n
x=0
xf(x) +μ^2
∑n
x=0
f(x)
=
∑n
x=0
x^2 f(x)−μ^2 =E[(x^2 )]−(E[x])^2
=n(n−1)p^2 +np−n^2 p^2
=np(1−p) =npq
I11-21. (a)f(x) =
( 3
x
)( 9
5 −x
)
( 12
5
)
∑ 5
x=1f(x) = 1
f(x) = 7/ 44 , f(1) = 21/ 44 , f(2) = 7/ 22 , f(3) = 1/ 12 , f(4) =f(5) = 0
(b) The probability thatn= 6items are selected with zero nondefectives is
f(x) =
( 3
x
)( 9
6 −x
)
( 12
6
) evaluated atx= 0orf(0) = 1/ 11. The probability that 6 items are
selected and there is 1 defective isf(1) = 9/ 22. We are not interested inf(x)for x
Solutions Chapter 11