I11-26.
x f(x) =^9
xe− 9
x!
0 0.00012341
1 0.00111069
2 0.0049981
3 0.0149943
4 0.0337372
5 0.0607269
6 0.0910903
7 0.117116
8 0.131756
9 0.131756
10 0.11858
11 0.0970201
12 0.072765
(a)P(X >4) = 1−
∑ 4
k=0f(k) = 0.^94503636
(b)P(X≤8) =
∑∞
k=0f(k) = 0.^45565260
(c)P(8< X≤12) =
∑ 12
k=8f(k) = 0.^5518747
I11-27. f(k) =^2
ke− 2
k!
(a) f(0) =e−^2 = 0. 1353
(b)
∑∞
k=6
f(k) =1−
∑^5
k=0
f(k) = 0. 0166
(c) 1−
∑^1
k=0
f(k) =0. 5940
I11-28. (a) Write √^1
2 π
∫x
−∞
e−t
(^2) / 2
dt=√^1
2 π
∫ 0
−∞
e−t
(^2) / 2
dt+√^1
2 π
∫x
0
e−t
(^2) / 2
dt
The first integral equals 1/2 and in the second integral make the substitutionτ=t/
√
2
to obtain result.
(b) Similar to part (a) but make the substitutionτ=√^12
(t−μ
σ
)
withdτ=σ√^12 dt.
I11-33. Area≈ 0. 982923
Solutions Chapter 11