Begin2.DVI

(Ben Green) #1
6-63. For the curves defined by the given parametric equations, find the position

vector, velocity vector and acceleration vector at the given time.

(a) x=t, y = 2t, z = 3 t, t 0 = 1
(b) x= cos 2 t, y = sin 2 t, z = 0, t 0 = 0
(c) x= cos 2 t, y = sin 2 t, z = 3t, t 0 =π

6-64. Show for A=A(t), B =B(t),and C =C(t)that

d
dt

[
A·(B×C)

]
=A·B×

dC
dt +
A·dB
dt ×
C+dA
dt ·
B×C

6-65. If F = (x^2 +z)ˆe 1 +xyz eˆ 2 +x^2 y^2 z^2 ˆe 3 find the partial derivatives

(a) ∂
F
∂x

, (b)∂
F
∂y

, (c) ∂
F
∂z

, (d)∂

(^2) F
∂x^2
, (e) ∂
(^2) F
∂y^2
, (f) ∂
(^2) F
∂z^2


6-66. Find the partial derivatives

(a) ∂Φ
∂x

, (b) ∂Φ
∂y

, (c)∂

(^2) Φ
∂x^2
, (d)∂
(^2) Φ
∂y^2
, (e) ∂
(^2) Φ
∂x ∂y


in each of the following cases.

(i) Φ = u^2 +v^2 with u=xy and v=x+y

(ii) Φ = uv with u=xy and v=x+y

(iii) Φ = v^2 + 2vwith v=x+y

6-67. Let Φ = Φ(r, θ)denote a scalar function of position in polar coordinates. If

the coordinates are changed to cartesian, where x=rcos θ y =rsin θ,

(a) Show that

∂Φ
∂y

=∂Φ
∂r

sin θ+∂Φ
∂θ

cos θ
r
∂^2 Φ
∂y^2 =

∂Φ
∂r

cos^2 θ
r +

∂^2 Φ
∂r^2 sin

(^2) θ+ 2 ∂^2 Φ
∂r ∂θ
sin θcos θ
r −^2
∂Φ
∂θ
sin θcos θ
r +
∂^2 Φ
∂θ^2
cos^2 θ
r^2


(b) Show that ∂

(^2) Φ
∂x^2 +
∂^2 Φ
∂y^2 =
∂^2 Φ
∂r^2 +
1
r
∂Φ
∂r +
1
r^2
∂^2 Φ
∂θ^22


6-68. Show the equation of the tangent plane to point (x 1 , y 1 , z 1 )on the surface of

sphere centered at (x 0 , y 0 , z 0 ), having radius a, is given by (r −r 1 )·(r 1 −r 0 ) = 0

Sketch a diagram illustrating these vectors.

6-69. For the scalar function of position F =F(u, v ),where u=u(x, y ), v =v(x, y )

calculate the quantities

∂F
∂x ,

∂F
∂y ,

∂^2 F
∂x^2 ,

∂^2 F
∂x ∂y ,

∂^2 F
∂y^2
Free download pdf