Begin2.DVI

(Ben Green) #1
6-70. Consider the tetrahedron defined by the vectors A, B, C illustrated.

(a) Show the vectors n 1 =^12 A×B, n 2 =^12 B×C ,

n 3 =^12 C×A, n 4 =^12 (C−A)×(B−A)are normal to the faces

of the tetrahedron with magnitudes equal to the area of the

faces. (b) Show n 1 +n 2 +n 3 +n 4 = 0

6-71. Find the work done in moving a particle in a counterclockwise direction

around a unit circle in the z= 0 plane if the particle moves in the force field

F=F(x, y, z ) = (x+y+z)ˆe 1 + (2 x−y+ 3z)ˆe 2 + (3 x−y−z)ˆe 3.

6-72. The straight-line defined by the parametric equations

x= 2 + λ, y = 3 + 2 λ, z = 4 − 2 λ

with parameter λ, is drawn through the force field F =F(x, y, z ) = xy ˆe 1 +yz ˆe 2 +zˆe 3.

Evaluate the given line integrals along this line from the point P 1 (2 , 3 ,4) to the point

P 2 (4 , 7 ,0)
(a)

∫P 2

P 1

(x^2 +y^2 )ds (b)

∫P 2

P 1

F·dr (c)

∫P 2

P 1

F×dr

6-73. A particle moves around the closed

curve Cillustrated in figure. It moves in a vector

field F defined by

F =F(x, y ) = 6(y^2 −x)ˆe 1 + 6 xˆe 2.

Evaluate the line integrals in parts (a) and (b).

(a) ........
...................................
....................


............................ F·dr (b) ...............................................................


............................ F×dr (c) Show that ...............................................................


............................ F·dr =−...............................................................


.............................. F·dr

6-74. Evaluate the given line integrals along the path

C={(x, y )|x= 2t, y = 1 + t+t^2 }from t= 0 to t= 3.

(a)


C

y dx + (x+y)dy (b)


C

y dx −x dy (c)


C

2 xy dx +x^2 dy

6-75. Evaluate the given line integrals around the square with vertices (0 ,0),(1 ,0),

(1 ,1) and (0 ,1), both clockwise and counterclockwise.

(a)


C

©x(y+ 1) dx + (x+ 1)y dy (b)


C

©(x^2 −y^2 )dx + (x^2 +y^2 )dy (c)


C

©y dx +x dy
Free download pdf