Science - USA (2021-12-17)

(Antfer) #1

pulses closely matches the laser profile. Here,
the time resolution was limited by the ~10-ns
width of the laser pulses, which already led to
considerable damping of the quantum beats.
Shorter pulse widths of 0.1 to 1 ns would allow
better resolution and would be desirable to
follow faster oscillations occurring, for exam-
ple, because of higher values ofJor because
of fast Zeeman mixing at largeDgvalues and
higher fields.
The pump-push technique reported here
represents an extension of the arsenal of spin
chemical techniques. It can be also expected
to open applications for molecular electronics
and quantum information science.


REFERENCES AND NOTES



  1. U. E. Steiner, T. Ulrich,Chem. Rev. 89 , 51–147 (1989).

  2. B. Brocklehurst,Chem. Soc. Rev. 31 , 301–311 (2002).

  3. R. Kaptein, J. L. Oosterhoff,Chem. Phys. Lett. 4 , 195– 197
    (1969).

  4. G. L. Closs,J. Am. Chem. Soc. 91 , 4552–4554 (1969).

  5. Y. Kimet al.,Quantum Rep. 3 , 80–126 (2021).

  6. T. Ritzet al.,Biophys. J. 96 , 3451–3457 (2009).

  7. K. Schulten, C. E. Swenberg, A. Weller,Z. Physik. Chem. 111 ,
    1 – 5 (1978).

  8. J. Xuet al.,Nature 594 , 535–540 (2021).

  9. M. Tiersch, H. J. Briegel,Phil. Trans. R. Soc. A 370 , 4517– 4540
    (2012).

  10. E. Wigner, E. E. Witmer,Eur. Phys. J. A 51 , 859– 886
    (1928).

  11. Y.-N. Chiu, M. Gong,Chem. Phys. 145 , 397–412 (1990).

  12. J. A. Jones, P. J. Hore,Chem. Phys. Lett. 488 , 90– 93
    (2010).

  13. I. K. Kominis,Phys. Rev. E 83 , 056118 (2011).

  14. H. M. Hoang, V. T. B. Pham, G. Grampp, D. R. Kattnig,ACS
    Omega 3 , 10296–10305 (2018).

  15. V. A. Bagryansky, V. I. Borovkov, Y. N. Molin,Russ. Chem. Rev.
    76 , 493–506 (2007).

  16. O. A. Anisimov, V. L. Bizyaev, N. N. Lukzen, V. M. Grigoryants,
    Y. N. Molin,Chem. Phys. Lett. 101 , 131–135 (1983).

  17. D. V. Stass, B. M. Tadjikov, Y. N. Molin,Chem. Phys. Lett. 235 ,
    511 – 516 (1995).

  18. P. Gilch, F. Pöllinger-Dammer, C. Musewald,
    M. E. Michel-Beyerle, U. E. Steiner,Science 281 , 982– 984
    (1998).

  19. M. R. Wasielewski, C. H. Bock, M. K. Bowman, J. R. Norris,
    Nature 303 , 520–522 (1983).

  20. Y. Sakaguchi, A. W. Astashkin, B. M. Tadjikov,Chem. Phys. Lett.
    280 , 481–488 (1997).

  21. H. Murai,J. Photochem. Photobiol. C Photochem. Rev. 3 ,
    183 – 201 (2003).

  22. G. Kothe, S. Weber, E. Ohmes, M. C. Thurnauer, J. R. Norris,
    J. Am. Chem. Soc. 116 , 7729–7734 (1994).

  23. G. M. Paternòet al.,Adv. Funct. Mater. 29 , 1805249 (2019).

  24. R. T. Hayes, M. R. Wasielewski, D. Gosztola,J. Am. Chem. Soc.
    122 , 5563–5567 (2000).

  25. R. T. Hayes, C. J. Walsh, M. R. Wasielewski,J. Phys. Chem. A
    108 , 3253–3260 (2004).

  26. L. Hammarström,Acc. Chem. Res. 48 , 840–850 (2015).

  27. S. Neumann, C. Kerzig, O. S. Wenger,Chem. Sci. 10 ,
    5624 – 5633 (2019).

  28. L. Kobret al.,J. Am. Chem. Soc. 134 , 12430– 12433
    (2012).

  29. D. Mimset al.,J. Chem. Phys. 151 , 244308 (2019).

  30. D. J. Gosztola, M. P. Niemczyk, W. A. Svec, A. S. Lukas,
    M. R. Wasielewski,J. Phys. Chem. A 104 , 6545– 6551
    (2000).

  31. N. N. Lukzen, J. H. Klein, C. Lambert, U. E. Steiner,
    Z. Physik. Chem. 231 , 197–223 (2017).

  32. J. Schäfer, M. Holzapfel, A. Schmiedel, U. E. Steiner, C. Lambert,
    Phys. Chem. Chem. Phys. 20 , 27093–27104 (2018).

  33. U. E. Steiner, J. Schäfer, N. N. Lukzen, C. Lambert,
    J. Phys. Chem. C 122 , 11701–11708 (2018).

  34. T. P. Fay, L. P. Lindoy, D. E. Manolopoulos,J. Chem. Phys. 151 ,
    154117 (2019).

  35. R. Haberkorn,Mol. Phys. 32 , 1491–1493 (1976).

  36. I. K. Kominis,Phys. Rev. E 80 , 056115 (2009).
    37. K. Maedaet al.,Chem. Commun. 47 , 6563–6565 (2011).
    38. C. D. Buckley, C. N. Hunter, P. J. Hore, K. A. McLauchlan,
    Chem. Phys. Lett. 135 , 307–312 (1987).
    39. G. L. Closs, M. D. E. Forbes, J. R. Norris,J. Phys. Chem. 91 ,
    3592 – 3599 (1987).
    40. P. J. Hore, D. A. Hunter, C. D. McKie, A. J. Hoff,Chem. Phys.
    Lett. 137 , 495–500 (1987).
    41. M. D. E. Forbes, S. R. Ruberu,J. Phys. Chem. 97 , 13223– 13233
    (1993).
    42. I. Zhukovet al.,J. Chem. Phys. 152 , 014203 (2020).
    43. C. Lambert, D. Mims, J. Herpich, N. Lukzen, U. Steiner, Data
    for spin quantum beats in pump push spectroscopy,
    Dryad(2021); https://doi.org/10.5061/dryad.4mw6m90b1.


ACKNOWLEDGMENTS
This work is dedicated to the memory of our late colleague
Konstantin Ivanov, who died 5 March 2021 of COVID-19 at the age
of 44. C.L. and D.M. thank A. Schmiedel for assisting with the
pump-push setup.Funding:This work was supported by Deutsche
Forschungsgemeinschaft grant LA991/20-1 (C.L. and D.M.); the
SolTech Initiative of the Bavarian State Ministry of Education,
Culture, Science, and the Arts; and Ministry of Science and Higher
Education of the Russian Federation grant 075-15-2020-779

(N.N.L.).Author contributions:Conceptualization: C.L., U.E.S.,
and D.M. Formal analysis: U.E.S. and N.N.L. Funding acquisition:
C.L. and N.N.L. Investigation: D.M., J.H., and U.E.S. Methodology:
D.M. and U.E.S. Project administration: C.L. Software: N.N.L.
and U.E.S. Supervision: C.L. and U.E.S. Writing–original draft:
D.M. and U.E.S. Writing–review and editing: C.L., D.M., U.E.S., and
N.N.L.Competing interests:The authors declare no competing
interests.Data and materials availability:All experimental data
shown in the main text or the supplementary materials are
accessible at the Dryad repository ( 43 ).

SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abl4254
Materials and Methods
Supplementary Text
Figs. S1 to S31
Table S1
Synthesis Protocols
References ( 44 – 61 )

14 July 2021; accepted 19 October 2021
10.1126/science.abl4254

REPORTS



QUANTUM SIMULATION

Many-bodyÐlocalized discrete time crystal with a


programmable spin-based quantum simulator


J. Randall1,2†, C. E. Bradley1,2†, F. V. van der Gronden1,2, A. Galicia1,2, M. H. Abobeih1,2, M. Markham^3 ,
D. J. Twitchen^3 , F. Machado4,5, N. Y. Yao4,5, T. H. Taminiau1,2*

The discrete time crystal (DTC) is a nonequilibrium phase of matter that spontaneously breaks time-
translation symmetry. Disorder-induced many-body localization can stabilize the DTC phase by breaking
ergodicity and preventing thermalization. Here, we observe the hallmark signatures of the many-
bodyÐlocalized DTC using a quantum simulation platform based on individually controllable carbon-13
nuclear spins in diamond. We demonstrate long-lived period-doubled oscillations and confirm that they
are robust for generic initial states, thus showing the characteristic time-crystalline order across
the many-body spectrum. Our results are consistent with the realization of an out-of-equilibrium
Floquet phase of matter and introduce a programmable quantum simulator based on solid-state spins
for exploring many-body physics.

A


time crystal spontaneously breaks time-
translation symmetry ( 1 – 3 ). Understand-
ing the consequences and limitations of
this idea has motivated intense explo-
ration across a multitude of physical set-
tings ( 4 – 8 ). A particularly fruitful case has been
that of isolated periodically driven (Floquet)
quantum systems, in which the stability of time
crystals is connected to fundamental ques-
tions in nonequilibrium statistical mechanics
( 4 , 5 , 9 – 11 ).

In a Floquet system, the spontaneous break-
ing of the time-translation symmetry asso-
ciated with the periodic drive results in a
discrete time crystal (DTC) ( 9 – 11 ). The DTC is a
new phase of matter that locks onto a period
that is a multiple of that of the drive and is
stable against perturbations. Experiments have
revealed signatures of discrete time-crystalline
behavior in a range of systems including trap-
ped ions ( 12 , 13 ), spin ensembles ( 14 – 17 ), ultra-
cold atoms ( 18 , 19 ), and superconducting
qubits ( 20 ).
A key challenge is that the stability of the
DTC, as well as any type of order in a Floquet
many-body system, requires a mechanism to
avoid thermalization and heating from the
periodic drive. Although there exist a num-
ber of strategies for exponentially delaying
thermalization ( 7 , 13 , 21 – 23 ), the only known
mechanism for breaking ergodicity in a ge-
neric interacting system is disorder-induced

1474 17 DECEMBER 2021¥VOL 374 ISSUE 6574 science.orgSCIENCE


(^1) QuTech, Delft University of Technology, PO Box 5046, 2600
GA Delft, Netherlands.^2 Kavli Institute of Nanoscience Delft,
Delft University of Technology, P.O. Box 5046, 2600 GA
Delft, Netherlands.^3 Element Six Innovation, Fermi Avenue,
Harwell Oxford, Didcot, Oxfordshire OX11 0QR, UK.
(^4) Department of Physics, University of California, Berkeley,
CA 94720, USA.^5 Materials Sciences Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA.
*Corresponding author. Email: [email protected]
†These authors contributed equally to this work.
RESEARCH

Free download pdf